タグ「直線」の検索結果

162ページ目:全2462問中1611問~1620問を表示)
福井大学 国立 福井大学 2012年 第4問
行列$A=\left( \begin{array}{cc}
2 & -3 \\
3 & 2
\end{array} \right)$で表される1次変換を$f$とする.$f$によって,点$\mathrm{P}_0(1,\ 0)$が移る点を$\mathrm{P}_1(x_1,\ y_1)$,正の整数$n$に対して点$\mathrm{P}_n(x_n,\ y_n)$が移る点を$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1})$とする.原点を$\mathrm{O}$として,以下の問いに答えよ.

(1)$\cos \angle \mathrm{P}_n \mathrm{OP}_{n+1}$の値を求めよ.
(2)2以上の整数$n$で,直線$\mathrm{OP}_n$が線分$\mathrm{P}_0 \mathrm{P}_1$と交わる最小の$n$を求めよ.
(3)$i$を虚数単位とする.0でない整数$n$に対して,実数$a_n,\ b_n$を$(2+3i)^n=a_n+b_ni$により定める.このとき次の等式
\[ A^n=\left( \begin{array}{cc}
a_n & -b_n \\
b_n & a_n
\end{array} \right) \]
が0でないすべての整数$n$に対して成り立つことを証明せよ.ただし,正の整数$m$に対し$A^{-m}=(A^m)^{-1}$とする.
山口大学 国立 山口大学 2012年 第3問
2点$\mathrm{A}$,$\mathrm{B}$は,$\mathrm{AB}=2$を満たしながら放物線$\displaystyle C:y=\frac{1}{2}x^2-x+\frac{3}{2}$の上を動く点とする.このとき,次の問いに答えなさい.

(1)$\mathrm{AB}$の中点を$\mathrm{P}$とする.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$の$x$座標をそれぞれ$a,\ b,\ p$とするとき,$a+b$と$ab$の値をそれぞれ$p$を用いて表しなさい.
(2)$\mathrm{P}$の$y$座標を$p$を用いて表しなさい.
(3)$\mathrm{P}$の$x$座標に対して$\mathrm{P}$の$y$座標を定める関数を$y=f(x)$とする.2つの曲線$y=f(x)$,$\displaystyle y=\frac{1}{2}x^2-x+\frac{3}{2}$と2直線$x=0,\ x=2$で囲まれた図形の面積を求めなさい.
山口大学 国立 山口大学 2012年 第4問
$xy$平面において,直線$y=8$の上に点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$が,直線$y=0$の上に点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{Q}_3$,$\mathrm{Q}_4$,$\mathrm{Q}_5$が,それぞれ$x$座標の小さい順に並んでいる.これらを$y=8$上の点と$y=0$上の点ひとつずつからなる5つの組に分け,それぞれの組の2点を結んでできる5本の線分を考える.下図はその一例である.このとき,次の問いに答えなさい.
(図は省略)

(1)3本の線分$\mathrm{P}_i \mathrm{Q}_n$,$\mathrm{P}_j \mathrm{Q}_m$,$\mathrm{P}_k \mathrm{Q}_l$が1点$\mathrm{R}$で交わるとき,$\displaystyle \frac{\mathrm{P}_i \mathrm{P}_j \cdot \mathrm{Q}_l \mathrm{Q}_m}{\mathrm{P}_j \mathrm{P}_k \cdot \mathrm{Q}_m \mathrm{Q}_n}$を求めなさい.ただし,$i<j<k$かつ$l<m<n$であるとする.
(2)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,どのような結び方をしても3本の線分が1点で交わらないことを(1)を用いて背理法で示しなさい.
(3)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,交点の数の合計がちょうど2つになるような結び方は何通りあるかを答えなさい.
山口大学 国立 山口大学 2012年 第1問
$xy$平面上に点$\mathrm{A}(-1,\ 0)$と,原点を中心とする半径1の円$C$を考える.$C$上の点$\mathrm{P}$を通り$x$軸に垂直な直線を$\ell$とし,$\ell$と$x$軸の交点を$\mathrm{Q}$とする.このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の$x$座標を$a$とするとき,$f(a)=\mathrm{AQ}+\mathrm{PQ}$を$a$を用いて表しなさい.
(2)(1)で求めた関数$f(a)$の$-1 \leqq a \leqq 1$における最大値を求めなさい.
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
金沢大学 国立 金沢大学 2012年 第2問
直線$\ell:(x,\ y,\ z)=(5,\ 0,\ 0)+s(1,\ -1,\ 0)$上に点$\mathrm{P}_0$,直線$m:(x,\ y,\ z)=(0,\ 0,\ 2)+t(1,\ 0,\ 2)$上に点$\mathrm{Q}_0$があり,$\overrightarrow{\mathrm{P}_0 \mathrm{Q}_0}$はベクトル$(1,\ -1,\ 0)$と$(1,\ 0,\ 2)$の両方に垂直である.次の問いに答えよ.

(1)$\mathrm{P}_0,\ \mathrm{Q}_0$の座標を求めよ.
(2)$|\overrightarrow{\mathrm{P}_0 \mathrm{Q}_0}|$を求めよ.
(3)直線$\ell$上の点$\mathrm{P}$,直線$m$上の点$\mathrm{Q}$について,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{PP_0}}$,$\overrightarrow{\mathrm{P_0Q_0}}$,$\overrightarrow{\mathrm{Q_0Q}}$で表せ.また,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{PP_0}}+\overrightarrow{\mathrm{Q_0Q}}|^2+16$であることを示せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第3問
曲線$y^2-2xy+x^3=0$について,以下の問いに答えよ.ただし,$x$および$y$は$x \geqq 0,\ y \geqq 0$の実数とする.

(1)$y$についての解を求めよ.
(2)曲線の概形を描き,$x$および$y$のとりえる値の範囲を求めよ.
(3)直線$y=x$と曲線のうち$y \geqq x$を満たす線分で囲まれた部分の面積$S$を求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第3問
$n$は自然数を表すとして,以下の問いに答えよ.

(1)平面を次の条件を満たす$n$個の直線によって分割する.
【どの直線も他のすべての直線と交わり,どの$3$つの直線も$1$点で交わらない.】
このような$n$個の直線によって作られる領域の個数を$L(n)$とすると,$L(1)=2,\ L(2)=4$は容易にわかる.次の問いに答えよ.

(i) $L(3),\ L(4),\ L(5)$をそれぞれ求めよ.
(ii) $L(n)$の漸化式を求めよ.
(iii) $L(n)$を求めよ.

(2)平面を次の条件を満たす$n$個の円によって分割する.
【どの円も他のすべての円と$2$点で交わり,どの$3$つの円も$1$点で交わらない.】
このような$n$個の円によって作られる領域の個数を$D(n)$とすると,$D(1)=2$は容易にわかる.次の問いに答えよ.

(i) $D(2),\ D(3),\ D(4)$をそれぞれ求めよ.
(ii) $D(n)$の漸化式を求めよ.
(iii) $D(n)$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第2問
$xy$平面上の点とベクトルに関する以下の問いに答えよ.

(1)図のように$x$軸の正の部分と$30^\circ$の角をなす直線上に$n$個の点($\mathrm{A}_1,\ \mathrm{A}_2,\ \cdots, \mathrm{A}_n$)を以下の規則で配置する.このときの$\mathrm{A}_n$の座標を$n$を用いて表せ.また$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad \overrightarrow{\mathrm{A}_1 \mathrm{A}_2}=\frac{1}{2}\overrightarrow{\mathrm{OA}_1},\quad \overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}=\frac{1}{2}\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}} \]
(図は省略)
(2)今度は$n$個の点を第一象限内に図のように反時計回りに配置する.各線分は隣り合う線分と直角をなす.このとき$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.ただし,各線分の長さの関係は以下の規則に従うものとする.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad |\overrightarrow{\mathrm{A}_1 \mathrm{A}_2}|=\frac{1}{2}|\overrightarrow{\mathrm{OA}_1}|,\quad |\overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}|=\frac{1}{2}|\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}}| \]
(図は省略)
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第4問
箱$\mathrm{A}$には$1$から$9$までの数が書かれた札が$9$枚,箱$\mathrm{B}$には$0$から$9$までの数が書かれた札が$10$枚入っている.今,それぞれの箱から$1$枚ずつ札を取り出して$2$桁の数を作る.ただし,箱$\mathrm{A}$から取り出した札を十の位,箱$\mathrm{B}$から取り出した札を一の位に割り当てるものとし,取り出した札は数を記録した後で元の箱に戻す.今,下図のような数直線を考え,点$\mathrm{Q}$が初期状態で$3$の位置にあるものとする.$2$桁の数が$3$の倍数の場合は数直線上の点$\mathrm{Q}$を負の方向に$1$移動し,それ以外の場合は正の方向に$1$移動するものとして,以下の問いに答えよ.

(1)数直線上の点$\mathrm{Q}$を移動する試行を$3$回行ったとき,点$\mathrm{Q}$が原点$0$上にない確率を求めよ.
(2)数直線上の点$\mathrm{Q}$を移動する試行を$n$回($n \geqq 3$)行ったときの点$\mathrm{Q}$の位置を$x(n)$とする.数直線上を負の方向に移動した回数を$k$として$x(n)$を$n$と$k$で表せ.また,点$\mathrm{Q}$が原点$0$上にあるときの$k$を求めよ.
(3)数直線上の点$\mathrm{Q}$の移動する試行を$n$回($n \geqq 3$)行ったとき,点$\mathrm{Q}$が原点$0$上にある確率を求めよ.
(図は省略)
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。