タグ「直線」の検索結果

160ページ目:全2462問中1591問~1600問を表示)
旭川医科大学 国立 旭川医科大学 2012年 第4問
曲線$C:y=\log x$上に異なる$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}(b,\ \log b)$をとり,$C$の$\mathrm{A}$における接線と$\mathrm{B}$における接線の交点について考える.次の問いに答えよ.

(1)任意に与えられた$a>1$に対して,$2$本の接線の交点がちょうど直線$x=1$上にくるような$b$が唯一つだけ存在し,$b<1$であることを示せ.
(2)$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}\displaystyle \left( \frac{1}{a},\ \log \frac{1}{a} \right) \ (a>1)$について,$2$本の接線の交点の$x$座標が$1$より大きいか小さいかを調べよ.
(3)$k$を自然数とする.$\displaystyle a=1+\frac{1}{k}$として(2)の結果を使って,次の不等式が成り立つことを示せ.
\[ \sum_{k=1}^n \frac{1}{k} > \frac{1}{2} \left( 1+\frac{1}{n} \right) +\log n \quad (n \geqq 2) \]
帯広畜産大学 国立 帯広畜産大学 2012年 第2問
座標平面上の2点A$(6,\ 0)$,B$(-2,\ 4)$を結ぶ線分AB上を点Tが移動する.原点Oと点Tを頂点とし,2辺がそれぞれ$x$軸と$y$軸上にある長方形の面積を$S$とする.また,点Tの座標を$(x,\ f(x))$とし,$S$を$x$の関数として$S(x)$と表す.次の各問に解答しなさい.

(1)$f(x)$と$S(x)$を$x$で表しなさい.さらに,区間$-2 \leqq x \leqq 6$における$y=S(x)$のグラフの概形を図示しなさい.
(2)直線$x=-2$と曲線$y=S(x)$および$x$軸で囲まれた図形の面積を求めなさい.
(3)区間$-2 \leqq x \leqq 4$における任意の$x$の値について,区間$x \leqq t \leqq x+2$における関数$S(t)$の最大値を$x$の関数として$M(x)$と定義する.関数$M(x)$を$x$で表し,さらに$y=M(x)$のグラフの概形を図示しなさい.
愛知教育大学 国立 愛知教育大学 2012年 第3問
座標空間内において,2点O$(0,\ 0,\ 0)$,A$(1,\ 0,\ 1)$を端点とする線分OA,平面$z=2$上に点$(0,\ 0,\ 2)$を中心とする半径1の円周$C$,および$C$上の動点Pがあるとする.このとき,以下の問いに答えよ.

(1)直線PAと$xy$平面との交点をA$^\prime$とするとき,A$^\prime$の軌跡の方程式を求めよ.
(2)線分OA$^\prime$が動いてできる$xy$平面上の図形を描け.
(3)(2)の図形の面積を求めよ.
愛知教育大学 国立 愛知教育大学 2012年 第6問
$0 \leqq a \leqq 1$をみたす$a$に対して$A=\left( \begin{array}{cc}
\sqrt{1-a^2} & -a \\
a & \sqrt{1-a^2}
\end{array} \right)$とし,$A$の表す$1$次変換によって,平面上の点$(1,\ 1)$が,直線$y=\sqrt{3}x$上の点に移されるとする.このとき以下の問いに答えよ.

(1)$a$の値を求めよ.

以下,$a$は$(1)$で求めた値とする.

\mon[$(2)$] $A^2$を求めよ.
\mon[$(3)$] $A^{2012}$を求めよ.
福島大学 国立 福島大学 2012年 第2問
座標平面上の3点$\mathrm{A}(9,\ 12)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(25,\ 0)$を頂点とする三角形$\mathrm{ABC}$および,三角形$\mathrm{ABC}$の内接円と外接円を考える.三角形$\mathrm{ABC}$の内接円は,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$とそれぞれ点$\mathrm{D},\ \mathrm{E},\ \mathrm{F}$で接する.また,三角形$\mathrm{ABC}$の内接円の中心と点$\mathrm{A}$を通る直線は,辺$\mathrm{BC}$と点$\mathrm{G}$で交わる.このとき,以下の問いに答えなさい.

(1)3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めなさい.
(2)線分$\mathrm{AE}$の長さを求めなさい.
(3)三角形$\mathrm{ABC}$の内接円の半径と中心の座標を求めなさい.
(4)点$\mathrm{G}$の座標を求めなさい.
(5)三角形$\mathrm{ABC}$の外接円の方程式を求めなさい.
長崎大学 国立 長崎大学 2012年 第3問
3点$\mathrm{P}(4,\ -5)$,$\mathrm{Q}(0,\ 3)$,$\mathrm{R}(7,\ 4)$を通る円を$C$とする.次の問いに答えよ.

(1)円$C$の方程式を$x^2+y^2+ax+by+c=0$とおいて,$a,\ b,\ c$の値を求めよ.
(2)点$\mathrm{S}(-4,\ 0)$を通り,傾き$m$の直線を$\ell$とする.直線$\ell$が円$C$と2つの交点をもつような傾き$m$の範囲を求めよ.
(3)傾き$m$が(2)の範囲にあるとき,直線$\ell$と円$C$の2つの交点の中点の軌跡はある円の一部分であることを示し,その軌跡を求めよ.
鳥取大学 国立 鳥取大学 2012年 第3問
$2$次関数$f(x)=-x^2+10x-16$について次の問いに答えよ.

(1)$f(x)=0$を満たす$x$の値$\alpha,\ \beta$を求めよ.ただし$\alpha<\beta$とする.
(2)関数$y=f(x)$のグラフと$x$軸とで囲まれた図形の面積$S$を求めよ.
(3)$2$次関数$g(x)=px^2+qx$と$f(x)$は同じ$x$の値で極値をとり,関数$y=g(x)$のグラフと$x$軸および$2$直線$x=\alpha,\ x=\beta$とで囲まれた図形の面積が$(2)$で求めた$S$に等しいとする.定数$p,\ q$の値を求めよ.
東京農工大学 国立 東京農工大学 2012年 第3問
区間$1 \leqq x \leqq 4$で定められた関数$\displaystyle f(x)=\sqrt{4x-x^2},\ g(x)=\sqrt{x \log \frac{4}{x}}$について,次の問いに答えよ.ただし対数は自然対数とする.

(1)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた部分を,$x$軸の周りに1回転させてできる回転体の体積$V$を求めよ.
(2)区間$1 \leqq x \leqq 4$において$\{f(x)\}^2-\{g(x)\}^2 \geqq 0$が成り立つことを示せ.
(3)2つの曲線$y=f(x),\ y=g(x)$と直線$x=1$で囲まれた部分を$D$とおく.$D$を$x$軸の周りに1回転させてできる回転体の体積$W$を求めよ.
電気通信大学 国立 電気通信大学 2012年 第1問
関数$\displaystyle f(x)=\frac{1}{x^2+1}$に対して,$xy$平面上の曲線$C:y=f(x)$を考える.このとき,以下の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)曲線$C$の第$1$象限にある変曲点$\mathrm{P}$の座標を求めよ.
(3)変曲点$\mathrm{P}$における曲線$C$の接線$\ell$の方程式を求めよ.
(4)$\displaystyle x=\tan \theta \ \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とおく.このとき,不定積分
\[ I=\int \frac{dx}{x^2+1} \]
を$\theta$を用いて表せ.なお,不定積分の計算においては積分定数を省略してもよい.
(5)曲線$C$と接線$\ell$および$y$軸とで囲まれる部分の面積$S$を求めよ.
福井大学 国立 福井大学 2012年 第4問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における法線を$\ell$とし,$\ell$に関して点$(a,\ 0)$と対称な点を$\mathrm{B}$,直線$\mathrm{AB}$と$y$軸との交点を$\mathrm{P}$とする.点$\mathrm{P}$の$y$座標を$f(a)$とおくとき,以下の問いに答えよ.

(1)$f(a)$を$a$を用いて表せ.
(2)$a$が実数全体を動くとき,$f(a)$の最大値とそのときの$a$の値を求めよ.
(3)$a$を(2)で求めた値とするとき,曲線$C$,$y$軸と線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。