タグ「直線」の検索結果

159ページ目:全2462問中1581問~1590問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$a,\ b$を実数とし,$a<b$とする.関数$f(x)$は閉区間$[a,\ b]$で連続,開区間$(a,\ b)$で少なくとも2回まで微分可能で,$f^{\prime\prime}(x) \geqq 0$とする.以下の問いに答えよ.

(1)$a<c<b$とする.$y=g(x)$を点$(c,\ f(c))$における$f(x)$の接線とする.$a \leqq x \leqq b$のとき$g(x) \leqq f(x)$を示せ.
(2)$y=h(x)$を,$(a,\ f(a))$,$(b,\ f(b))$の2点を通る直線とする.$a \leqq x \leqq b$のとき$f(x) \leqq h(x)$を示せ.
(3)$a<c<b$とする.
\[ \frac{1}{2}(b-a) \left( f^\prime(c)(a+b-2c)+2f(c) \right) \leqq \int_a^b f(x) \, dx \leqq \frac{1}{2}(f(a)+f(b))(b-a) \]
を示せ.
(4)\[ \frac{\pi}{2}e^{-\frac{1}{\sqrt{2}}} \leqq \int_0^{\frac{\pi}{2}} e^{-\cos x} \, dx \leqq \frac{\pi}{4} \left( 1+\frac{1}{e} \right) \]
を示せ.
島根大学 国立 島根大学 2012年 第3問
$x>0$に対して,$\displaystyle f_n(x)=x^{\frac{1}{n}}\log x \ (n=1,\ 2,\ 3,\ \cdots)$とおく.このとき,次の問いに答えよ.

(1)関数$f_n(x)$の極値と,極値を与える$x$の値を求めよ.
(2)(1)で求めた$x$の値を$a_n$とするとき,$x \geqq a_n$の範囲における曲線$y=f_n(x)$と直線$x=a_n$および$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)極限$\displaystyle \lim_{n \to \infty}S_n$を求めよ.ただし,必要があれば,$\displaystyle \lim_{n \to \infty}ne^{-n}=0$を用いてもよい.
島根大学 国立 島根大学 2012年 第2問
$a$を実数とする.次の問いに答えよ.

(1)放物線$y=x^2-x+3a$と直線$y=3ax+2$は異なる$2$つの交点をもつことを示せ.
(2)$(1)$の放物線と直線の$2$つの交点をむすぶ線分の中点を$\mathrm{M}$とする.$a$が実数全体を動くとき,$\mathrm{M}$の$y$座標の最小値を求めよ.
(3)$(1)$の放物線と直線の$2$つの交点の$x$座標を$\alpha$と$\beta$とする.$a$が実数全体を動くとき,$|\alpha|+|\beta|$の最小値を求めよ.
島根大学 国立 島根大学 2012年 第2問
$x>0$に対して,$\displaystyle f_n(x)=x^{\frac{1}{n}}\log x \ (n=1,\ 2,\ 3,\ \cdots)$とおく.このとき,次の問いに答えよ.

(1)関数$f_n(x)$の極値と,極値を与える$x$の値を求めよ.
(2)(1)で求めた$x$の値を$a_n$とするとき,$x \geqq a_n$の範囲における曲線$y=f_n(x)$と直線$x=a_n$および$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)極限$\displaystyle \lim_{n \to \infty}S_n$を求めよ.ただし,必要があれば,$\displaystyle \lim_{n \to \infty}ne^{-n}=0$を用いてもよい.
島根大学 国立 島根大学 2012年 第1問
直線上に$n+1$個の点P$_0$,P$_1$,P$_2$,$\cdots$,P$_n$がこの順に並んでいて,隣り合う2点間の距離
\[ \text{P}_0 \text{P}_1,\ \text{P}_1 \text{P}_2,\ \text{P}_2 \text{P}_3,\ \cdots,\ \text{P}_{n-1} \text{P}_n \]
がそれぞれ$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{1}{3},\ \cdots,\ \frac{1}{n}$となっている.この$n+1$個の点から,同様の確からしさで異なる2点を選び,その距離を$d$とする.このとき,$d$の期待値を求めよ.
島根大学 国立 島根大学 2012年 第2問
四角形$\mathrm{ABCD}$において,直線$\mathrm{AB}$と直線$\mathrm{CD}$は点$\mathrm{O}$で交わり,直線$\mathrm{BC}$と直線$\mathrm{DA}$は点$\mathrm{P}$で交わり,直線$\mathrm{OP}$と直線$\mathrm{AC}$は点$\mathrm{Q}$で交わり,直線$\mathrm{OP}$と直線$\mathrm{BD}$は点$\mathrm{R}$で交わっているとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OP}}=\overrightarrow{p},\ \overrightarrow{\mathrm{OC}}=h \overrightarrow{a}+k \overrightarrow{p}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{a},\ h,\ k$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{p},\ h,\ k$を用いて表せ.
(3)$\overrightarrow{\mathrm{OQ}}=x \overrightarrow{p},\ \overrightarrow{\mathrm{OR}}=y \overrightarrow{p},\ \overrightarrow{\mathrm{PQ}}=z \overrightarrow{p},\ \overrightarrow{\mathrm{PR}}=w \overrightarrow{p}$とするとき,$\displaystyle \frac{yz}{xw}$の値を求めよ.
東京学芸大学 国立 東京学芸大学 2012年 第2問
原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(2,\ 0)$,$\mathrm{B}(0,\ 2)$に対して,線分$\mathrm{OA}$上の点$\mathrm{P}$と線分$\mathrm{OB}$上の点$\mathrm{Q}$を,直線$\mathrm{PQ}$が三角形$\mathrm{OAB}$の面積を二等分するようにとる.下の問いに答えよ.

(1)点$\mathrm{Q}$の$y$座標が$t$のとき,直線$\mathrm{PQ}$の方程式と$t$の値の範囲を求めよ.
(2)(1)で求めた範囲で$t$を動かすとき,直線$\mathrm{PQ}$が通る点全体の領域を求め,図示せよ.
室蘭工業大学 国立 室蘭工業大学 2012年 第4問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一直線上にないものとし,$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{AC}}|=1$とする.また,$t$を正の実数とし,平面上の点$\mathrm{P}$を$\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$と定め,線分$\mathrm{AP}$と$\mathrm{BC}$の交点を$\mathrm{Q}$とする.

(1)$\overrightarrow{\mathrm{AQ}}$を$t$および$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)三角形$\mathrm{ABP}$の面積を$t$と内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AC}} \perp \overrightarrow{\mathrm{CP}}$かつ点$\mathrm{Q}$が線分$\mathrm{BC}$を$1:2$に内分するとき,三角形$\mathrm{BPQ}$の面積を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2012年 第2問
関数$\displaystyle f(x)=x+\frac{1}{x}$について,以下の問いに答えなさい.

(1)$x>0$における曲線$y=f(x)$の概形を書きなさい.
(2)$t>0$のとき,3直線$y=0,\ x=t,\ x=t+2$と曲線$y=f(x)$で囲まれる部分の面積$S(t)$を求めなさい.
(3)$t>0$における$S(t)$の最小値を求めなさい.
小樽商科大学 国立 小樽商科大学 2012年 第1問
次の[ ]の中を適当に補いなさい.

(1)$0 \leqq \theta \leqq \pi$のとき,関数$y=(2 \sin \theta-3 \cos \theta)^2-(2 \sin \theta-3 \cos \theta)+1$の最大値$M$と最小値$m$を求めると,$(M,\ m)=[ ]$.
(2)$x^2-4x-3=0,\ x>0$のとき,$2x^4+0x^3+1x^2+2x+2012=p+q\sqrt{7}$を満たす整数$p,\ q$は$(p,\ q)=[ ]$.
(3)平面上に$\mathrm{A}(a,\ b)$,$\mathrm{B}(-2,\ 0)$,$\mathrm{C}(0,\ 0)$がある.点$\mathrm{M}$は線分$\mathrm{AB}$ \\
の中点で点$\mathrm{X}$は線分$\mathrm{AC}$を$(1-t):t$に内分する点である.ただし, \\
$\displaystyle -4<a<0,\ b>0,\ 0<t<\frac{1}{2}$とする.直線$\mathrm{MX}$と直線$\mathrm{BC}$の \\
交点を$\mathrm{P}$,線分$\mathrm{AP}$と直線$\mathrm{BX}$の交点を$\mathrm{Q}$とする.三角形$\mathrm{BCX}$の面積を$S_1$,三角形$\mathrm{XPQ}$の面積を$S_2$とおくと,$\displaystyle \frac{S_1}{S_2}=[ ]$.
\img{2_2_2012_1}{40}
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。