タグ「直線」の検索結果

158ページ目:全2462問中1571問~1580問を表示)
徳島大学 国立 徳島大学 2012年 第2問
$a>0$とする.曲線$y=a^3x^2$を$C_1$とし,曲線$\displaystyle y=-\frac{1}{x} (x>0)$を$C_2$とする.また,$C_1$と$C_2$に同時に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と曲線$C_1,\ C_2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$a$が$a>0$の範囲を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
徳島大学 国立 徳島大学 2012年 第3問
$f(x)=\sqrt{x}e^{-x} (0 \leqq x \leqq 1)$とする.

(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
徳島大学 国立 徳島大学 2012年 第1問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$4:3$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$3:1$に内分する点を$\mathrm{E}$とする.また,線分$\mathrm{BE}$と線分$\mathrm{CD}$の交点を$\mathrm{F}$とし,直線$\mathrm{AF}$と辺$\mathrm{BC}$の交点を$\mathrm{G}$とする.

(1)長さの比$\mathrm{BF}:\mathrm{FE}$を求めよ.
(2)長さの比$\mathrm{BG}:\mathrm{GC}$を求めよ.
(3)面積の比$\triangle \mathrm{EFC}: \triangle \mathrm{ABC}$を求めよ.
徳島大学 国立 徳島大学 2012年 第2問
$f(x)=\sqrt{x}e^{-x} (0 \leqq x \leqq 1)$とする.

(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点$\mathrm{O}$を始点とする$3$つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$が$\mathrm{O}$においてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$が$\mathrm{O}$においてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.$\mathrm{O}$とは異なる$\ell_1,\ \ell_2,\ \ell_3$上の$3$点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$を頂点とする正三角形が存在するような$\cos \theta$の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第3問
次の問いに答えよ.

(1)放物線$C:y=x^2+6$,直線$\ell:y=2x$を考える.点Pが$C$上を,点Qが$\ell$上をそれぞれ動くとき,PQの最小値を求めよ.
(2)(1)で,PQが最小値をとる$C$上の点P,$\ell$上の点Qに対し,線分PQ,放物線$C$,直線$\ell$,及び$y$軸で囲まれた領域の面積を求めよ.
(3)放物線$C:y=x^2+6$,直線$\ell_k:y=2kx-5$を考える.点Pが$C$上を,点Rが$\ell_k$上をそれぞれ動いたときのPRの最小値が1となる$k$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
次の問いに答えよ.

(1)放物線$C:y=x^2+6$,直線$\ell:y=2x$を考える.点Pが$C$上を,点Qが$\ell$上をそれぞれ動くとき,PQの最小値を求めよ.
(2)(1)で,PQが最小値をとる$C$上の点P,$\ell$上の点Qに対し,線分PQ,放物線$C$,直線$\ell$,及び$y$軸で囲まれた領域の面積を求めよ.
(3)放物線$C:y=x^2+6$,直線$\ell_k:y=2kx-5$を考える.点Pが$C$上を,点Rが$\ell_k$上をそれぞれ動いたときのPRの最小値が1となる$k$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第3問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.$x,\ y$を正数とし,$\ell_1,\ \ell_2,\ \ell_3$上に点P$_1$,P$_2$,P$_3$をそれぞれ,$\text{OP}_1=1,\ \text{OP}_2=x,\ \text{OP}_3=y$となるようにとる.$\triangle$P$_1$P$_2$P$_3$が正三角形となる$x,\ y$が存在するような$\cos \theta$の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.Oとは異なる$\ell_1,\ \ell_2,\ \ell_3$上の3点P$_1$,P$_2$,P$_3$を頂点とする正三角形が存在するような$\cos \theta$の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
半径2の円板が$x$軸上を正の方向に滑らずに回転するとき,円板上の点Pの描く曲線$C$を考える.円板の中心の最初の位置を$(0,\ 2)$,点Pの最初の位置を$(0,\ 1)$とする.

(1)円板がその中心のまわりに回転した角を$\theta$とするとき,Pの座標は
\[ (2\theta-\sin \theta,\ 2-\cos \theta) \]
で与えられることを示せ.
(2)点P$(2\theta-\sin \theta,\ 2-\cos \theta) \ (0<\theta<2\pi)$における曲線$C$の法線と$x$軸との交点をQとする.線分PQの長さが最大となるような点Pを求めよ.ここで,Pにおいて接線に直交する直線を法線という.
(3)曲線$C$と$x$軸,2直線$x=0,\ x=4\pi$で囲まれた図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。