タグ「直線」の検索結果

149ページ目:全2462問中1481問~1490問を表示)
筑波大学 国立 筑波大学 2012年 第4問
四面体$\mathrm{OABC}$において,次が満たされているとする.
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}} \]
点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とする.点$\mathrm{O}$を通り平面$\alpha$と直交する直線と,平面$\alpha$との交点を$\mathrm{H}$とする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(2)点$\mathrm{H}$は$\triangle \mathrm{ABC}$の垂心であること,すなわち$\overrightarrow{\mathrm{AH}} \perp \overrightarrow{\mathrm{BC}},\ \overrightarrow{\mathrm{BH}} \perp \overrightarrow{\mathrm{CA}},\ \overrightarrow{\mathrm{CH}} \perp \overrightarrow{\mathrm{AB}}$を示せ.
(3)$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OB}}|=|\overrightarrow{\mathrm{OC}}|=2,\ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=1$とする.このとき,$\triangle \mathrm{ABC}$の各辺の長さおよび線分$\mathrm{OH}$の長さを求めよ.
筑波大学 国立 筑波大学 2012年 第5問
以下の問いに答えよ.

(1)座標平面において原点のまわりに角$\theta \ (0<\theta<\pi)$だけ回転する移動を表す行列を$A$とする.$A$が等式$A^2-A+E=O$を満たすとき,$\theta$と$A$を求めよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\ O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$である.
(2)直線$y=\sqrt{3}x$に関する対称移動を表す行列$B$を求めよ.
(3)直線$y=kx$に関する対称移動を表す行列$C$とする.(1),(2)において求めた行列$A,\ B$に対して$BC=A$が成り立つとき,$k$を求めよ.
筑波大学 国立 筑波大学 2012年 第6問
2つの双曲線$C:x^2-y^2=1,\ H:x^2-y^2=-1$を考える.双曲線$H$上の点$\mathrm{P}(s,\ t)$に対して,方程式$sx-ty=1$で定まる直線を$\ell$とする.

(1)直線$\ell$は点$\mathrm{P}$を通らないことを示せ.
(2)直線$\ell$と双曲線$C$は異なる$2$点$\mathrm{Q}$,$\mathrm{R}$で交わることを示し,$\triangle \mathrm{PQR}$の重心$\mathrm{G}$の座標を$s,\ t$を用いて表せ.
(3)(2)における$3$点$\mathrm{G}$,$\mathrm{Q}$,$\mathrm{R}$に対して,$\triangle \mathrm{GQR}$の面積は点$\mathrm{P}(s,\ t)$の位置によらず一定であることを示せ.
千葉大学 国立 千葉大学 2012年 第6問
1より小さい正の実数$a$に対して
\[ \text{円}C(a): (x+a-1)^2+(y+a-1)^2=2a^2 \]
と定める.その上で,数列$\{a_n\}$を以下の方法によって定める.

\mon[(i)] $n=1$のときは,円$C(a)$が$x$軸と接するような定数$a$の値を$a_1$とする.さらに,円$C(a_1)$と$x$軸との接点をP$_1$とし,円$C(a_1)$の中心をQ$_1$とおく.
\mon[(ii)] $n \geqq 2$のときは,円$C(a)$が直線P$_{n-1}$Q$_{n-1}$と接するような定数$a$の値を$a_n$とする.さらに,円$C(a_n)$と直線P$_{n-1}$Q$_{n-1}$との接点をP$_n$とし,円$C(a_n)$の中心をQ$_n$とおく.

このとき,以下の問いに答えよ.

(1)$a_1$を求めよ.
(2)$a_2$を求めよ.
(3)$\{a_n\}$の一般項を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第2問
座標平面上の点B$(0,\ 1)$を中心とする半径1の円を$C_0$,$a > 0$とし,点A$(a,\ 0)$を通り$C_0$に接する2直線のうち$x$軸でない方を$\ell$とする.また,$C_0$,$x$軸,$\ell$によって囲まれる領域(境界も含む)の内部にあって,$C_0$,$x$軸,$\ell$に接する円を$C_1$,$C_1$の半径を$r$とする.さらに,$C_0$,$C_1$,$x$軸によって囲まれる領域(境界を含む)の内部にあって,$C_0$,$C_1$,$x$軸に接する円を$C_2$,$C_2$の半径を$s$とする.このとき,以下の問に答えよ.

(1)次の問いに答えよ.

\mon[(i)] $r$を$a$で表せ.
\mon[(ii)] $a =\sqrt{3}$のとき,$r$はいくらか.

(2)次の問いに答えよ.

\mon[(i)] $s$を$a$で表せ.
\mon[(ii)] $\displaystyle a=\frac{3}{4}$のとき,$s$はいくらか.

(3)極限値$\displaystyle \lim_{a \to 0}\frac{r}{a^2},\ \lim_{a \to 0}\frac{s}{r}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第3問
媒介変数$t \ (0 < t \leqq \pi)$を用いて
\[ \left\{
\begin{array}{l}
x=\sin t \\
\displaystyle y=\frac{\sqrt{3}}{2} \sin 2t
\end{array}
\right. \]
と表される$xy$平面上の曲線を$C_1$,
\[ \left\{
\begin{array}{l}
\displaystyle x=\cos \theta \sin t-\frac{\sqrt{3}}{2} \sin \theta \sin 2t \\ \\
\displaystyle y=\sin \theta \sin t+\frac{\sqrt{3}}{2} \cos \theta \sin 2t
\end{array}
\right. \]
と表される曲線を$C_2$とする.ここで,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,以下の問に答えよ.

(1)$xy$平面上に$C_1$の概形を描け.
(2)直線$y=-\sqrt{3}x+k$が,$C_1$と少なくとも1点を共有するための実数$k$の条件を求めよ.
(3)直線$y=(\tan \theta)x+l$が,$C_2$と少なくとも1点を共有するための実数$l$の条件を求めよ.
(4)$C_1$が囲む領域の面積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第4問
$n,\ r$は$n \geqq r$を満たす正の整数であるとし,$x,\ y$ともに$0$以上$n$以下の整数であるような座標平面上の点$(x,\ y)$の集合を$S$とする.また,曲線$x^2+y^2=r^2 \ (x \geqq 0,\ y \geqq 0)$,$x$軸,$y$軸によって囲まれる領域(境界を含む)を$D$とする.ここで,$S$からランダムに$1$点を選ぶ試行を考える.このとき,以下の問に答えよ.

(1)$n=10,\ r=5$のとき,選ばれた点が$D$内にある確率はいくらか.
(2)$[\,x\,]$は$x$を超えない最大の整数を表す記号である.直線$x=t$上の点で$D$に含まれる$S$の要素の個数をこの記号を用いて表せ.ここで,$t$は0以上$r$以下の整数とする.
(3)$r=n$とし,選ばれた点が$D$内に含まれる確率を$P(n)$とする.このとき,極限値$\displaystyle \lim_{n \to \infty}P(n)$を求めよ.
信州大学 国立 信州大学 2012年 第2問
関数$\displaystyle f(x)=\frac{1}{\sqrt{3}}(1+\sin x)\cos x \ (0 \leqq x \leqq \pi)$を考える.

(1)$f(x)$の増減と極値,および曲線$y=f(x)$の凹凸を調べ,その概形をかけ.
(2)曲線$y=f(x)$と,$x$軸および$2$直線$x=0,\ x=\pi$で囲まれた図形の面積$S$を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$T$は原点の回りの回転移動と原点中心の拡大(相似変換)との合成変換であることを示せ.
(2)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の2倍となる$c$の値を求めよ.
(3)$c=2$とする.楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.$E$が$E^\prime$の内部にあることを示し,$E^\prime$の内部にあり$E$の外部にある部分の面積を求めよ.
熊本大学 国立 熊本大学 2012年 第4問
定数$a$は$0<a<1$をみたすとする.曲線$C:y=(x-1)^2$と$C$上の点$(a,\ (a-1)^2)$における接線$\ell$について,以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$および2直線$x=0,\ x=1$とで囲まれた2つの部分の面積の和$S(a)$の最小値とそのときの$a$の値を求めよ.
(3)曲線$C$と2直線$x=0,\ y=0$とで囲まれ,接線$\ell$の上側にある2つの部分の面積の和$T(a)$の最小値とそのときの$a$の値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。