タグ「直線」の検索結果

143ページ目:全2462問中1421問~1430問を表示)
九州歯科大学 公立 九州歯科大学 2013年 第2問
曲線$y=\sin x$上の点$\mathrm{P}(\theta,\ \sin \theta)$における曲線の接線$\ell_1$と$x$軸との交点を$\mathrm{K}$とする.また,点$\mathrm{P}$から$x$軸へ下した垂線$\ell_2$と$x$軸との交点を$\mathrm{H}$とする.このとき,次の問いに答えよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.

(1)接線$\ell_1$を$y=Ax+B$とおくとき,$A$と$B$を$\theta$を用いて表せ.
(2)$\triangle \mathrm{PKH}$の面積$S$を$\cos \theta$を用いて表せ.
(3)$S=1$となる$\cos \theta$の値を求めよ.
(4)座標平面の原点を$\mathrm{O}$とする.また,曲線$y=\sin x$と二つの線分$\mathrm{OH}$,$\mathrm{PH}$で囲まれた図形の面積を$T$とする.$S:T=3:2$となる$\theta$の値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第3問
原点を$\mathrm{O}$とする座標平面で,関数$y=\sqrt{x^2-1} (x \geqq 1)$のグラフを$C$とする.また,$t>1$を満たす実数$t$に対し,直線$x+y=t$と$C$との交点を$\mathrm{P}$,直線$x+y=t$と$x$軸との交点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)線分$\mathrm{PQ}$の長さ$f(t)$を求めなさい.
(2)次の極限値を求めなさい.
\[ \lim_{n \to \infty}\sum_{k=1}^n f \left( 1+\frac{k(t-1)}{n} \right) \frac{t-1}{\sqrt{2}n} \]
(3)線分$\mathrm{OP}$,$x$軸および$C$で囲まれる図形の面積を$S$とする.$S$を用いて点$\mathrm{P}$の座標を表しなさい.
大阪府立大学 公立 大阪府立大学 2013年 第3問
座標平面上の点$\mathrm{P}(0,\ -1)$を中心とする半径$2$の円を$C$とする.$C$上に点$\mathrm{Q}(0,\ 1)$をとる.点$\mathrm{R}$を$C$上の点で$\angle \mathrm{QPR}=120^\circ$をみたし,$\mathrm{R}$の$x$座標は負であるようにとる.$\mathrm{Q}$と$\mathrm{R}$を両端として,中心角が$120^\circ$である$C$の弧を$A$とする.さらに,$a$を実数の定数として,直線$\displaystyle y=\frac{1}{\sqrt{3}}x+a$を$\ell$とするとき,以下の問いに答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$A$と$\ell$の共有点の個数を求めよ.
(3)$A$と$\ell$が相異なる$2$つの共有点をもつとき,$A$と$\ell$で囲まれた部分の面積を$S(a)$とする.$S(a)$が最大になるときの$a$の値と,そのときの$S(a)$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第6問
$2$次関数$\displaystyle y=\sqrt{2}x^2-\frac{\sqrt{2}}{4}$のグラフを$C$とする.以下の問いに答えよ.

(1)相異なる実数$s,\ t$に対し,$C$上の点$\displaystyle \left( s,\ \sqrt{2}s^2-\frac{\sqrt{2}}{4} \right)$,$\displaystyle \left( t,\ \sqrt{2}t^2-\frac{\sqrt{2}}{4} \right)$における$C$の法線をそれぞれ$\ell_s,\ \ell_t$で表す.$\ell_s$と$\ell_t$の交点の座標を求めよ.ただし,曲線$C$上の点$\mathrm{P}$における法線とは,$\mathrm{P}$を通り,$\mathrm{P}$における$C$の接線と垂直に交わる直線のことである.
(2)$t$を固定して$s$を$t$に近づけるとき,(1)で求めた交点の$x$座標と$y$座標が近づく値をそれぞれ$f(t)$,$g(t)$で表す.このとき,$f(t)$,$g(t)$を求めよ.
(3)(2)で求めた$f(t)$,$g(t)$を,実数全体で定義された$t$の関数とみなして,
\[ x=f(t),\quad y=g(t) \]
によって媒介変数表示される曲線を$D$とする.このとき,$C$と$D$によって囲まれた部分の面積を求めよ.
高崎経済大学 公立 高崎経済大学 2013年 第4問
$3$次関数$f(x)=x^3+3x^2-9x$について,以下の各問いに答えよ.

(1)$y=f(x)$のグラフにおいて,$f(x)$が極大となる点を$\mathrm{A}$,極小となる点を$\mathrm{B}$とする.$\mathrm{A}$および$\mathrm{B}$の座標を求めよ.
(2)$\mathrm{A}$と$\mathrm{B}$を両端とする線分の中点を$\mathrm{C}$とする.$\mathrm{C}$の座標を求めよ.
(3)$y=f(x)$のグラフ上に点$\mathrm{D}$をとる.ただし,$\mathrm{D}$の$x$座標は$\mathrm{B}$の$x$座標より大きいものとする.いま,三角形$\mathrm{BCD}$の面積が$480$であるとき,$\mathrm{C}$と$\mathrm{D}$を結ぶ直線の式を求めよ.
高崎経済大学 公立 高崎経済大学 2013年 第5問
$2$つの円$C_1:x^2+y^2=16$と$C_2:x^2+(y-8)^2=4$があるとき,以下の各問いに答えよ.

(1)$C_1$と$C_2$の両方に接する直線の本数を答えよ.
(2)$C_1$と$C_2$の両方に接する直線の方程式をすべて求めよ.
(3)$C_1$と$C_2$の両方に接する直線の交点のうち,原点から最も遠い交点の座標を求めよ.
福岡女子大学 公立 福岡女子大学 2013年 第3問
以下の問いに答えなさい.

(1)$\log x$の不定積分,および$(\log x)^2$の不定積分を求めなさい.
(2)曲線$y=\log x$上の点$(e^2,\ 2)$における接線$\ell$の方程式を求めなさい.
(3)曲線$y=\log x$と$(2)$で求めた接線$\ell$,および$x$軸で囲まれた図形を$S$とする.$S$を$x$軸のまわりに$1$回転してできる回転体の体積を求めなさい.
福岡女子大学 公立 福岡女子大学 2013年 第4問
$a \neq c$とする.座標平面上で,焦点$\mathrm{F}(0,\ c)$と準線$y=a$とから等距離にある点$(x,\ y)$の軌跡は放物線であり,その式を$x^2=4p(y-q)$とおくとき,$\displaystyle q=\frac{a+c}{2}$となる.以下の問に答えなさい.

(1)この放物線と直線$y=c$の交点は,焦点$\mathrm{F}$と準線$y=a$とから等距離にあることに着目して,$p$を$a$と$c$の式で表しなさい.
(2)$a>c>b$とする.焦点$\mathrm{F}$,準線$y=a$の放物線を$L$で表し,焦点$\mathrm{F}$,準線$y=b$の放物線を$L^\prime$で表す.$L$と$L^\prime$の交点$\mathrm{T}$の$y$座標を$a,\ b$を用いて表しなさい.
(3)$(2)$で求めた交点$\mathrm{T}$における$L$の接線と$L^\prime$の接線は,直交することを示しなさい.
京都府立大学 公立 京都府立大学 2013年 第2問
$\mathrm{O}$を原点とする$xyz$空間内に$5$点$\mathrm{A}(-1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$,$\mathrm{D}(0,\ 0,\ 2)$,$\mathrm{E}(0,\ 0,\ 4)$をとる.中心が$\mathrm{D}$,半径が$2$の球面を$S$とし,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.$S$が$\alpha$と交わってできる図形を$F$とする.$\mathrm{D}$から$\alpha$に垂線$\mathrm{DH}$を下ろす.以下の問いに答えよ.

(1)$\alpha$に垂直な単位ベクトルをすべて求めよ.
(2)$F$は$\mathrm{H}$を中心とする円であることを示せ.
(3)$F$の半径と中心の座標を求めよ.
(4)点$\mathrm{P}$は$F$上を動く点とし,直線$\mathrm{EP}$と$xy$平面との交点を$\mathrm{Q}(s,\ t,\ 0)$とする.このとき,$s,\ t$が満たす方程式を求めよ.
京都府立大学 公立 京都府立大学 2013年 第3問
$0 \leqq a<1$とする.$xy$平面上の曲線$C$を$y=1+x \sqrt{1-x^2}$で,直線$\ell$を$y=1+ax$で定める.$C$と$\ell$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を$a$の関数と考えて$V(a)$とする.以下の問いに答えよ.

(1)$-1 \leqq x \leqq 1$とするとき,不等式$2x \sqrt{1-x^2} \geqq x$を解け.
(2)$V(a)$を$a$を用いて多項式で表せ.
(3)$\displaystyle M_n=\frac{1}{2n} \sum_{k=1}^n V \left( \frac{k}{2n} \right)$とするとき,$\displaystyle \lim_{n \to \infty}M_n$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。