タグ「直線」の検索結果

142ページ目:全2462問中1411問~1420問を表示)
滋賀県立大学 公立 滋賀県立大学 2013年 第4問
$a$を正の定数とする.曲線$y=|e^{-ax|\sin ax} (x \geqq 0)$において,極大となる点を$x$座標の小さい方から順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.$\mathrm{P}_n (n=1,\ 2,\ \cdots)$を通り,$y$軸に平行な直線が$x$軸と交わる点を$\mathrm{Q}_n$とする.$\mathrm{P}_n$,$\mathrm{Q}_n$および原点を頂点とする三角形の面積を$S_n$とする.

(1)$\mathrm{P}_n$の座標を$a,\ n$を用いて表せ.
(2)$S_n$を$a,\ n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty}\frac{S_n}{S_{n+1}}$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第1問
平面上に三角形$\mathrm{OAB}$があり,$\mathrm{OA}=3$,$\mathrm{OB}=\sqrt{3}$,$\angle \mathrm{AOB}=30^\circ$であるとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{N}$とする.ベクトル$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$との交点を$\mathrm{H}$とする.ベクトル$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
広島市立大学 公立 広島市立大学 2013年 第4問
曲線$y=e^{2x}$を$C$とする.$C$の接線で原点を通るものを$\ell_1$とし,$C$と$\ell_1$の接点$\mathrm{P}$における$C$の法線を$\ell_2$とする.以下の問いに答えよ.

(1)直線$\ell_1$の方程式,および点$\mathrm{P}$の座標を求めよ.
(2)直線$\ell_2$の方程式,および直線$\ell_2$と$y$軸の交点$\mathrm{Q}$の座標を求めよ.
(3)次の問いに答えよ.

(i) 部分積分法を用いて不定積分$\displaystyle \int \log x \, dx$,$\displaystyle \int (\log x)^2 \, dx$を求めよ.
(ii) 曲線$C$,直線$\ell_2$および$y$軸で囲まれる領域を$y$軸のまわりに$1$回転して得られる立体の体積を求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第3問
四面体の$4$つの頂点を$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$とし,空間のある点$\mathrm{P}$に関するそれぞれの位置ベクトルを$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$,$\overrightarrow{a_4}$とする.いま$\triangle \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_3 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$を順に$\mathrm{T}_1$,$\mathrm{T}_2$,$\mathrm{T}_3$,$\mathrm{T}_4$で表しその重心をそれぞれ$\mathrm{G}_1$,$\mathrm{G}_2$,$\mathrm{G}_3$,$\mathrm{G}_4$とする.

(1)点$\mathrm{H}$を$\displaystyle \overrightarrow{\mathrm{PH}}=\frac{\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+\overrightarrow{a_4}}{4}$を満たす点とすると,$4$つの直線$\mathrm{A}_i \mathrm{G}_i (i=1,\ 2,\ 3,\ 4)$は$\mathrm{H}$で交わることを示せ.
(2)「直線$\mathrm{A}_i \mathrm{H}$は$\mathrm{T}_i$を含む平面に直交する($i=1,\ 2,\ 3,\ 4$)」という条件が成り立つと仮定する.このとき$\mathrm{P}$として$\mathrm{H}$を選べば,$\overrightarrow{a_j}$と$\overrightarrow{a_k}$の内積$\overrightarrow{a_j} \cdot \overrightarrow{a_k} (j,\ k=1,\ 2,\ 3,\ 4)$の値は$j \neq k$を満たすどの$j,\ k$に対しても同じであることを示せ.
(3)(2)の条件が成り立てば,四面体$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4$は正四面体であることを示せ.
大阪市立大学 公立 大阪市立大学 2013年 第4問
点$\mathrm{P}$は数直線上を動くものとする.$1$個のさいころを投げて,奇数の目が出たときには$\mathrm{P}$は正の向きに$1$だけ進み,偶数の目が出たときには$\mathrm{P}$は正の向きに$2$だけ進む.$n$を自然数とする.さいころを続けて投げて,出発点から$\mathrm{P}$が進んだ距離が$n$以上になったら,そこでさいころを投げるのをやめるものとする.このときに,出発点から$\mathrm{P}$が進んだ距離がちょうど$n$である確率を$a_n$とする.また,$b_n=a_{n+1}-a_n$とおく.次の問いに答えよ.

(1)$a_1,\ a_2,\ a_3$を求めよ.
(2)$a_{n+2}$を$a_{n+1},\ a_n$を用いて表せ.
(3)$b_{n+1}$を$b_n$を用いて表せ.
(4)$b_n,\ a_n$を求めよ.
大阪市立大学 公立 大阪市立大学 2013年 第4問
$\mathrm{OA}=4$,$\mathrm{OB}=5$である三角形$\mathrm{OAB}$に対し,$k=\mathrm{AB}$,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$の値を$k$を用いて表せ.
(2)$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{P}$,$\angle \mathrm{OAB}$の二等分線と辺$\mathrm{OB}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$を$k$,$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)三角形$\mathrm{OAB}$の内心を$\mathrm{I}$とする.$\overrightarrow{\mathrm{OI}}$を$k$,$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(4)(3)の$\mathrm{I}$と直線$\mathrm{OA}$上の点$\mathrm{H}$に対して,$\mathrm{IH} \perp \mathrm{OA}$が成り立つとき,$\overrightarrow{\mathrm{IH}}$を$k$,$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
大阪府立大学 公立 大阪府立大学 2013年 第2問
行列$\left( \begin{array}{rr}
-2 & 1 \\
4 & -2
\end{array} \right)$が表す移動により,座標平面上の点$\mathrm{P}$は点$\mathrm{Q}$に移るとする.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$が座標平面全体の上を動くとき,点$\mathrm{Q}$は図形$F_1$全体の上を動くという.図形$F_1$を表す方程式を求めよ.
(2)$k$を実数とする.点$\mathrm{P}$が直線$y=kx+1$全体の上を動くとき,点$\mathrm{Q}$は図形$F_2$全体の上を動くという.図形$F_2$を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第3問
$2$つの曲線$C_1:y=\log x$および$C_2:y=\sqrt{ax}$を考える.ただし,$a$は正の定数である.このとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(t,\ \log t)$における接線$\ell_1$の方程式,および曲線$C_2$上の点$(s,\ \sqrt{as})$における接線$\ell_2$の方程式を求めよ.ただし,$t>0,\ s>0$である.
(2)曲線$C_1$と曲線$C_2$の両方に接する直線が存在しないための$a$の値の範囲を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第5問
$g(x)=\sin^3 x$とおき,$0<\theta<\pi$とする.$x$の$2$次関数$y=h(x)$のグラフは原点を頂点とし,$h(\theta)=g(\theta)$を満たすとする.このとき,曲線$y=g(x) (0 \leqq x \leqq \theta)$と直線$x=\theta$および$x$軸で囲まれた図形の面積を$G(\theta)$とおく.また,曲線$y=h(x)$と直線$x=\theta$および$x$軸で囲まれた図形の面積を$H(\theta)$とおく.このとき,以下の問いに答えよ.

(1)$H(\theta)$を求めよ.

(2)$\displaystyle G(\theta)=\frac{1}{3}(1-\cos \theta)^2(2+\cos \theta)$を証明せよ.

(3)$\displaystyle \lim_{\theta \to +0}\frac{G(\theta)}{H(\theta)}$を求めよ.
首都大学東京 公立 首都大学東京 2013年 第1問
$\overrightarrow{a}=(1,\ 0,\ 1)$,$\overrightarrow{b}=(1,\ 1,\ 0)$とする.点$\mathrm{P}(1,\ 1,\ 0)$を通り,$\overrightarrow{a}$に平行な直線を$\ell_1$とし,点$\mathrm{Q}(0,\ 0,\ 1)$を通り,$\overrightarrow{b}$に平行な直線を$\ell_2$とする.以下の問いに答えなさい.

(1)$\ell_1$上の点$\mathrm{R}$と$\ell_2$上の点$\mathrm{S}$を通る直線$\ell_3$が,$\ell_1$と$\ell_2$に垂直であるとする.このとき,$\mathrm{R}$,$\mathrm{S}$の座標を求めなさい.
(2)$\ell_1$上の$2$点$\mathrm{E}$,$\mathrm{F}$が$\mathrm{EF}=2$を満たしながら動き,$\ell_2$上を点$\mathrm{G}$が動くとき,$\triangle \mathrm{EFG}$の面積の最小値を求めなさい.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。