タグ「直線」の検索結果

141ページ目:全2462問中1401問~1410問を表示)
愛知学院大学 私立 愛知学院大学 2013年 第4問
$y=|x^2-k|$と,$x$軸および,直線$x=2$,$x=-2$で囲まれた領域の面積$S$を求めなさい.
愛知学院大学 私立 愛知学院大学 2013年 第2問
曲線$C:y=x^3-tx$上の点$\mathrm{P}(a,\ a^3-ta) (a<0)$における接線$\ell$が$C$と交わる点を$\mathrm{Q}$とする.

(1)点$\mathrm{Q}$の$x$座標を$a$を用いて表すと$x=[アイ]a$である.
(2)点$\mathrm{Q}$における$C$の接線が直線$\mathrm{PQ}$と直交するとき$([ウ]a^2-t)([エオ]a^2-t)=-1$である.
(3)$(2)$を満たす$a$の値がただ$1$つ決まるとき,$\displaystyle t=\frac{[カ]}{[キ]}$である.
首都大学東京 公立 首都大学東京 2013年 第1問
関数$f(x)=|x^2-3x|-x$について,以下の問いに答えなさい.

(1)関数$y=f(x)$のグラフをかきなさい.
(2)直線$\ell:y=-x+k$と$y=f(x)$のグラフがちょうど$3$点を共有するとき,定数$k$の値を求めなさい.
(3)(2)で求めた$k$の値に対する直線$\ell$と$y=f(x)$のグラフで囲まれた図形の面積を求めなさい.
首都大学東京 公立 首都大学東京 2013年 第4問
$a$は$0$でない定数とし,$b$と$c$を定数とする.$k$がすべての実数を動くとき,$xy$平面上の直線$\ell:y=kx+k^2+3k+1$はつねに放物線$C:y=ax^2+bx+c$に接するものとする.このとき,以下の問いに答えなさい.

(1)$a,\ b,\ c$の値を求めなさい.
(2)直線$\ell$と放物線$C$の接点を$\mathrm{P}$とするとき,原点$\mathrm{O}$と点$\mathrm{P}$を結ぶ線分$\mathrm{OP}$の中点$\mathrm{Q}(s,\ t)$の軌跡の方程式を求めなさい.
愛知県立大学 公立 愛知県立大学 2013年 第2問
座標平面上で,原点$\mathrm{O}$を始点とし第$1$象限の点$\mathrm{A}$を通る半直線$\mathrm{OA}$と$x$軸の正の向きとのなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.点$\mathrm{B}$は$x$軸上にあり,$|\overrightarrow{\mathrm{OB}}|=b$,$|\overrightarrow{\mathrm{OA}}|=a$とする.原点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$との交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=t \overrightarrow{\mathrm{AB}}$とおく.$\overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OB}}+(1-t) \overrightarrow{\mathrm{OA}}$であることを示し,$t$を$a,\ b,\ \theta$で表せ.
(2)$\theta$を固定し$b=1$とする.点$\mathrm{P}$が線分$\mathrm{AB}$上に存在するような$a$の値の範囲を求めよ.
(3)(2)において,$\triangle \mathrm{OAB}$の面積の最大値を求めよ.
(4)(2)において,$\displaystyle \theta=\frac{\pi}{3}$とする.面積が最大となる$\triangle \mathrm{OAB}$は直角三角形であることを示せ.
県立広島大学 公立 県立広島大学 2013年 第4問
$a$を正の実数とする.点$\mathrm{A}(0,\ 1)$を定点とし,点$\mathrm{P}(a,\ a^2)$を放物線$C:y=x^2$上の点とする.次の問いに答えよ.

(1)直線$\mathrm{AP}$と放物線$C$の交点で,点$\mathrm{P}$と異なる点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)点$\mathrm{P}$での放物線$C$の接線$\ell$と$x$軸との交点を$\mathrm{R}$とし,点$\mathrm{Q}$での$C$の接線$m$と$x$軸との交点を$\mathrm{S}$とする.このとき$\mathrm{R}$と$\mathrm{S}$の座標を$a$を用いて表せ.
(3)線分$\mathrm{PR}$,線分$\mathrm{RS}$,線分$\mathrm{SQ}$および放物線$C$の一部である曲線$\mathrm{PQ}$によって囲まれる部分の面積$T(a)$を$a$を用いて表せ.
(4)$T(a)$の最小値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2013年 第2問
$\mathrm{O}$を原点とする座標空間に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$がある.点$\mathrm{P}(x,\ y,\ z)$は$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$と異なっており,$|\overrightarrow{\mathrm{OP}}|=1$とする.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.直線$\mathrm{AG}$上に点$\mathrm{P}$があるとき,$x,\ y,\ z$の値を求めよ.
(2)点$\mathrm{P}$が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上にあって,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OA}}$のなす角が$\displaystyle \frac{\pi}{3}$である.このとき$x,\ y,\ z$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2013年 第5問
関数$\displaystyle f(x)=\frac{1}{4}x^2-x+\log (x+1) (x>-1)$について,次の問いに答えよ.ただし,不等式$2<e<3$が成り立つことは使ってよい.

(1)$y=f(x)$のグラフの概形をかけ.ただし,凹凸,変曲点は調べなくてよい.
(2)$a \neq 0$かつ$f(a)=0$となる$a$はただ$1$つあって,$1<a<2$を満たすことを示せ.
(3)区間$[0,\ a]$において曲線$y=f(x)$と$x$軸で囲まれる部分の面積を$S_1$とし,区間$[a,\ 4]$において曲線$y=f(x)$と$x$軸および直線$x=4$で囲まれる部分の面積を$S_2$とする.$S_1<S_2$を示せ.
広島市立大学 公立 広島市立大学 2013年 第3問
三角形$\mathrm{OAB}$において,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$であるとする.線分$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{P}$とし,直線$\mathrm{OP}$に関して点$\mathrm{A}$と対称な点を$\mathrm{Q}$とする.さらに,直線$\mathrm{OQ}$と直線$\mathrm{AB}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)三角形$\mathrm{OAR}$の面積を求めよ.
大阪市立大学 公立 大阪市立大学 2013年 第1問
放物線$C_1:y=2x^2$と放物線$C_2:y=(x-a)^2+b$を考える.ただし,$a,\ b$は定数で,$a>0$とする.放物線$C_1$と$C_2$がともにある点$\mathrm{P}$を通り,点$\mathrm{P}$において共通の接線$\ell$をもつとする.また,点$\mathrm{P}$で$\ell$と直交する直線を$m$とし,$m$と放物線$C_1$,$C_2$との$\mathrm{P}$以外の交点を,それぞれ$\mathrm{Q}$,$\mathrm{R}$とする.次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)直線$m$の方程式,および,点$\mathrm{Q}$,点$\mathrm{R}$の$x$座標を$a$を用いて表せ.
(3)$\displaystyle a=\frac{1}{4}$のとき,放物線$C_1$と直線$m$で囲まれた部分の面積$S$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。