タグ「直線」の検索結果

136ページ目:全2462問中1351問~1360問を表示)
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)行列$A=\left( \begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array} \right)$と$B=\left( \begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array} \right) (0<\beta<\alpha<2\pi)$の積$AB$の$(1,\ 1)$成分は$\theta=\alpha-\beta$を用いて表すと$[ ]$となり,$(1,\ 2)$成分は$\theta$を用いて表すと$[ ]$となる.ここで点$\mathrm{P}_1(\sqrt{2},\ \sqrt{2})$が$AB$で表される$1$次変換によって点$\displaystyle \mathrm{P}_2 \left( \frac{\sqrt{6}-\sqrt{2}}{2},\ \frac{\sqrt{6}+\sqrt{2}}{2} \right)$に移るとすると$\theta=[ ]$となる.このとき,${(AB)}^{25}$で表される$1$次変換によって点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となり,$((AB)^{-1})^{2013}$で点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となる.
(2)関数$f(x)=(ax^2+bx)e^{-x^2}$は$\displaystyle x=\frac{1}{2}$で極大値$1$をとるとする.このとき,$a=[ ]$,$b=[ ]$であり,$f(x)>0$を満たす範囲は$0<x<[ ]$となる.この区間で関数$g(x)=\log f(x)$を考える.曲線$C:y=g(x)$の点$\displaystyle \left( 1,\ -\frac{3}{4} \right)$における接線の方程式は$y=[ ]$となり,曲線$C$と直線$y=k$が共有点をもたない$k$の値の範囲は$[ ]$となる.
同志社大学 私立 同志社大学 2013年 第3問
定数$a (a>1)$に対して曲線$y=a^x$,$x$軸および$y$軸,直線$x=1$で囲まれた図形を$S$とし,曲線$y=a^{2x}$,曲線$y=a^x$および直線$x=1$で囲まれた図形を$D$とする.次の問いに答えよ.

(1)$S$を$x$軸のまわりに回転させてできる回転体の体積$V(a)$を求めよ.
(2)$D$を$x$軸のまわりに回転させてできる回転体の体積$W(a)$を求めよ.
(3)$V(a)=W(a)$となる$a$の値を求めよ.
(4)極限値$\displaystyle \lim_{a \to 1+0} \frac{W(a)}{a-1}$を求めよ.
同志社大学 私立 同志社大学 2013年 第4問
$k$は定数とし,媒介変数$t$を用いて$x=2 \sin^3 t$,$\displaystyle y=k \cos^3 t \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$と表される曲線$S$を考える.次の問いに答えよ.

(1)$\displaystyle \frac{dy}{dx}$を$k,\ t$を用いて表せ.ただし$\displaystyle 0<t<\frac{\pi}{2}$とする.
(2)曲線$S$が直線$x+y=1$に第$1$象限で接しているとき,接点の座標を$(p,\ q)$とする.$p,\ q,\ k$の値を求めよ.また,そのときの$t$の値$t_0$を求めよ.
(3)$(2)$で定まる$t_0$に対し,$\displaystyle \int_0^{t_0} \cos^4 t \, dt$,$\displaystyle \int_0^{t_0} \cos^6 t \, dt$の値をそれぞれ求めよ.
(4)$(2)$で定まる$p,\ q,\ k,\ t_0$に対し,$0 \leqq x \leqq p$で曲線$S$,直線$x+y=1$と$y$軸で囲まれる図形の面積を求めよ.
安田女子大学 私立 安田女子大学 2013年 第4問
$a$を正の実数とする.関数$y=f(x)=2x^3-6a^2x$について,次の問いに答えよ.

(1)$a=1$のとき,関数$y=f(x)$上の点$(2,\ 4)$における接線の方程式を求めよ.
(2)関数$y=f(x)$のグラフが原点に関して点対称であることを示せ.
(3)関数$f(x)$が極大となるグラフ上の点を通り,$x$軸と平行な直線が,再びこのグラフと交わる点の座標を求めよ.
安田女子大学 私立 安田女子大学 2013年 第3問
次の問いに答えよ.

(1)放物線$y=x^2+ax+b$が$2$点$(-2,\ 23)$,$(3,\ -2)$を通るとき,定数$a,\ b$の値を求めよ.
(2)$(1)$の放物線と直線$y=-x+3$の$2$つの交点の座標を求めよ.
(3)$(2)$の$2$つの交点の$x$座標をそれぞれ$m,\ n$とする.ただし,$m<n$とする.放物線$y=x^2-6x-k^2+4k+5$が$m \leqq x \leqq n$の区間において,常に$y<0$の部分にあるような定数$k$の値の範囲を求めよ.
杏林大学 私立 杏林大学 2013年 第1問
座標平面上の点$(x,\ y)$に対し,
\[ y=2 \sqrt{-x^2+4x-3}+1 \cdots\cdots① \]
が成立している.

(1)$①$の定義域は$[ア] \leqq x \leqq [イ]$,値域は$[ウ] \leqq y \leqq [エ]$である.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を$([オ],\ [カ] \pm \sqrt{[キ]})$にとると,$①$のグラフ上の任意の点$\mathrm{P}$に対し,常に$\mathrm{PA}+\mathrm{PB}=[ク]$が成り立つ.
(3)直線$y=x+k$が$①$のグラフと共有点を持つような定数$k$の範囲は
\[ [ケコ] \leqq k \leqq [サシ]+\sqrt{[ス]} \]
である.
(4)不等式$x-1 \leqq 2 \sqrt{-x^2+4x-3}+1$の解は
\[ [セ] \leqq x \leqq [ソ]+\frac{[タ]}{[チ]} \sqrt{[ツ]} \]
である.
神戸薬科大学 私立 神戸薬科大学 2013年 第3問
円周上の点$\mathrm{A}$での接線を$\ell$とする.直線が接線$\ell$と点$\mathrm{B}$で,円と$2$点$\mathrm{C}$,$\mathrm{D}$で$\mathrm{BC}=9$,$\mathrm{BD}=4$となるように交わっている.$\angle \mathrm{ABC}=\theta$とする.
(図は省略)

(1)線分$\mathrm{AB}$の長さは$[ ]$である.
(2)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表すと$[ ]$である.
大同大学 私立 大同大学 2013年 第4問
$0<a<2$とする.$x \geqq 0$のとき$f(x)=x^3$,$x<0$のとき$f(x)=x^2+2x$とする.

(1)曲線$y=f(x)$と直線$y=ax$の交点の$x$座標を求めよ.
(2)曲線$y=f(x) (x \geqq 0)$と直線$y=ax$で囲まれる部分の面積$S(a)$を求めよ.
(3)曲線$y=f(x)$と直線$y=ax$で囲まれる$2$つの部分の面積の和$T(a)$を求めよ.
(4)$T(a)$を最小にする$a$の値を求めよ.
杏林大学 私立 杏林大学 2013年 第2問
動点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は,時刻$t=0$においてすべて点$\mathrm{A}(3,\ 0)$にあり,原点$\mathrm{O}(0,\ 0)$を中心とする半径$3$の円周上を反時計まわりに移動する.時刻$t$において$\angle \mathrm{AOP}=t$,$\angle \mathrm{AOQ}=2t$,$\angle \mathrm{AOR}=3t$である.以下,$t$は$0<t<\pi$を満たすものとする.

(1)時刻$t$において,三角形$\mathrm{PQR}$の面積$S$は,
\[ S=[ア] \sin t-\frac{[イ]}{[ウ]} \sin \left( [エ] t \right) \]
と表わせる.面積$S$は$\displaystyle t=\frac{[オ]}{[カ]} \pi$のとき最大値$\displaystyle \frac{[キク]}{[ケ]} \sqrt{[コ]}$をとる.

(2)点$\mathrm{R}$から直線$\mathrm{PQ}$に下ろした垂線の足を$\mathrm{H}$とする.時刻$t$において,行列
$\left( \begin{array}{cc}
\cos \displaystyle\frac{3}{2}t & \sin \displaystyle\frac{3}{2}t \\
-\sin \displaystyle\frac{3}{2}t & \cos \displaystyle\frac{3}{2}t
\end{array} \right)$で表わされる$1$次変換により,点$\mathrm{H}$は
\[ \left( 3 \cos \left( \frac{[サ]}{[シ]} t \right),\ 3 \sin \left( \frac{[ス]}{[セ]} t \right) \right) \]
に移動する.$\mathrm{OH}^2$は$\displaystyle \cos t=\frac{\sqrt{[ソ]}}{[タ]}$を満たす時刻$t$において最大値$[チ]+[ツ] \sqrt{[テ]}$をとる.
(3)時刻$t$の変化にともない,線分$\mathrm{PR}$の中点が描く軌跡を$C$とする.点$\mathrm{O}$を極とし,半直線$\alpha \overrightarrow{\mathrm{OA}} (\alpha \geqq 0)$を始線としたとき,曲線$C$の極方程式は,極座標$(r,\ \theta)$を用いて
\[ r=[ト] \cos \left( \frac{[ナ]}{[ニ]} \theta \right) \]
と表わされる.
杏林大学 私立 杏林大学 2013年 第3問
$x \geqq 1$の実数$x$に対し,方程式
\[ f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t} \, dt \]
を満たす関数$f(x)$について,以下の問いに答えよ.

(1)$\displaystyle \int_1^e \frac{(\log_e t)^2}{t} \, dt=\frac{[ア]}{[イ]}$であることに注意すると,
\[ f(x)=(\log_e x)^2-\frac{[ウ]}{[エ]} \]
となる.また,曲線$y=f(x)$の変曲点の$y$座標の値は$\displaystyle \frac{[オ]}{[カ]}$である.
(2)点$(e,\ f(e))$における$y=f(x)$の接線の方程式は
\[ y=[キ] e^{[クケ]} x-\frac{[コ]}{[サ]} \]
である.この接線と曲線$y=f(x)$および直線$x=1$で囲まれた図形の面積は
\[ [シス]+\frac{1}{e} \left( [セ]+e^{[ソ]} \right) \]
である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。