タグ「直線」の検索結果

128ページ目:全2462問中1271問~1280問を表示)
南山大学 私立 南山大学 2013年 第2問
曲線$C:y=x^2-4x+7$上の点$\mathrm{P}(a,\ a^2-4a+7)$における$C$の接線を$\ell_1$とする.また,$C$と$y$軸および$\ell_1$で囲まれた図形の面積を$S$とする.ただし,$a>0$とする.

(1)$\ell_1$の方程式を$a$で表せ.
(2)$S$を$a$で表せ.
(3)$a=3$とする.正の$y$切片を持ち,$\ell_1$と直交する直線を$\ell_2$とする.$\ell_1$,$\ell_2$および$y$軸で囲まれた三角形の面積が$\displaystyle \frac{1}{2}S$であるとき,$\ell_2$の方程式を求めよ.
南山大学 私立 南山大学 2013年 第2問
座標平面上に放物線$\displaystyle D:y=\frac{1}{2}x^2+x+2$と$D$上の点$\mathrm{P}(-2,\ 2)$がある.また,$\mathrm{P}$における$D$の接線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)円$C$は,半径が$r$で中心が$(r,\ 2)$であり,直線$\ell$と接しているとする.$C$と$\ell$との接点$\mathrm{A}$の$x$座標を$a$とするとき,$\mathrm{A}$を通り$\ell$と垂直に交わる直線の方程式を$a$で表せ.また,その直線が$C$の中心を通ることを用いて$r$を$a$で表せ.
(3)$(2)$の$r$の値を求めよ.
(4)$(2)$の$C$の外側で$D$と$C$と$\ell$とで囲まれた部分の面積$S$を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$1$より大きい実数$a$が$\displaystyle a^3+\frac{1}{a^3}=18$を満たすとき,$\displaystyle a+\frac {1}{a}$の値は$\displaystyle a+\frac {1}{a}=[ア]$であり,$\displaystyle a^2-\frac{1}{a^2}$の値は$\displaystyle a^2-\frac{1}{a^2}=[イ]$である.
(2)$0<\theta<\pi$とする.方程式$\sin \theta=\sin 2\theta$を解くと$\theta=[ウ]$であり,方程式$\sin \theta+\sin 2\theta=\sin 3\theta$を解くと$\theta=[エ]$である.
(3)$a>\sqrt{2}$のとき,$x$の不等式$\displaystyle \left( \frac{1}{a^2-1} \right)^x<a^4-2a^2+1$を解くと$[オ]$である.また,不等式$(y-1)(\log_23-\log_32^y)>0$を解くと$[カ]$である.
(4)実数$a$に対し,曲線$\displaystyle C:y=x^2+ax+\frac{3}{2}$と直線$\ell:y=2x+1$を考える.$C$と$\ell$が異なる$2$点で交わるとき,$a$のとりうる値の範囲は$[キ]$である.また,$0<x<1$において$C$と$\ell$が異なる$2$点で交わるとき,$a$のとりうる値の範囲は$[ク]$である.
南山大学 私立 南山大学 2013年 第2問
放物線$C:y=x^2-4x$と,$C$上の点$(3,\ -3)$における接線を$y$軸方向に$a$だけ平行移動した直線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$a=1$のとき,同一の座標平面に$C$と$\ell$を図示せよ.
(3)$x>0$において,$C$と$\ell$が異なる$2$点で交わるとき,$a$のとりうる値の範囲を求めよ.
(4)$(3)$のとき,$C$の下側で$y$軸と$C$と$\ell$とで囲まれた部分の面積$S$を求めよ.
甲南大学 私立 甲南大学 2013年 第2問
座標平面上に,$2$つの円$C_1:x^2+y^2=1$,$C_2:(x-2)^2+(y-1)^2=4$があり,$C_1$と$C_2$の共通接線を$n_1,\ n_2$(ただし$n_1$の傾きより$n_2$の傾きの方が大きい)とする.また,$C_1$と$C_2$の中心を結ぶ直線を$\ell$とし,$C_1$と$C_2$の$2$つの交点を結ぶ直線を$m$とする.このとき,以下の問いに答えよ.

(1)直線$\ell$の方程式,および$\ell$と$n_1$の交点の座標を求めよ.
(2)直線$n_1$と直線$\ell$とのなす角を$\displaystyle \alpha \left( \text{ただし} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$とし,$\tan \alpha$および$\tan 2\alpha$の値を求めよ.
(3)直線$n_2$の方程式を求めよ.
(4)直線$m$の方程式を求めよ.
(5)$3$つの直線$n_1,\ n_2,\ m$で囲まれた三角形の面積を求めよ.
昭和大学 私立 昭和大学 2013年 第1問
次の各問に答えよ.

(1)空間に点$\mathrm{P}(-4,\ -6,\ 3)$がある.いま,$2$点$\mathrm{A}(2,\ -3,\ 0)$,$\mathrm{B}(-4,\ 0,\ 12)$を結ぶ直線上に点$\mathrm{H}$をとり,直線$\mathrm{PH}$が直線$\mathrm{AB}$と垂直になるようにする.点$\mathrm{H}$の座標を求めよ.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $\displaystyle \tan \frac{\theta}{2}=t$とおく.$\sin \theta$を$t$を用いて表せ.
(ii) $\displaystyle \sin \theta+\cos \theta=-\frac{1}{5} (-\pi<\theta<\pi)$とする.$\displaystyle \tan \frac{\theta}{2}$の値を求めよ.

(3)$1$から$n$までの番号が$1$つずつ書かれた$n$枚の同じ形のカードがある.ただし,$n$は$2$以上の整数である.この$n$枚のカードから,元に戻さずに$1$枚ずつ$2$回無作為に抜き出すとする.$2$回目に抜き出したカードの番号が$1$回目の番号より大きければ,$2$回目のカードの番号を得点とする.そうでなければ得点は$0$とする.次の問に答えよ.

(i) $m$は$1 \leqq m \leqq n$を満たす整数とする.$2$回目のカードの番号が$m$となる確率を求めよ.
(ii) $m$は$(ⅰ)$と同じとする.得点が$m$となる確率を求めよ.
(iii) 得点が$0$となる確率を求めよ.
\mon[$\tokeishi$] 得点の期待値を求めよ.
昭和大学 私立 昭和大学 2013年 第2問
$2$つの$2$次曲線$C_1:y=x^2$,$C_2:y^2=x$がある.次の各問に答えよ.

(1)$C_1$,$C_2$のいずれにも接する直線の方程式を求めよ.
(2)$C_1$上の点$\mathrm{P}(p,\ p^2)$を通る直線で$C_2$と接するものがちょうど$2$本引けるような$p$のとり得る値の範囲を求めよ.
(3)$C_1$上の点$\mathrm{P}(p,\ p^2)$を通る直線で$C_2$と接するものがちょうど$2$本引け,さらにその$2$本の接線がいずれも$C_1$と$\mathrm{P}$以外の点でも交わるとする.このような$p$のとり得る値の範囲を求めよ.
(4)$C_1$上の相異なる$2$点$\mathrm{Q}_1(q_1,\ {q_1}^2)$,$\mathrm{Q}_2(q_2,\ {q_2}^2)$について,直線$\mathrm{Q}_1 \mathrm{Q}_2$が$C_2$と接するための条件を求めよ.
(5)$C_1$上の点$\mathrm{P}(p,\ p^2)$を通る直線で$C_2$と接するものがちょうど$2$本引け,さらにその$2$本の接線がいずれも$C_1$と$\mathrm{P}$以外の点でも交わるとする.いま,その$2$本の接線と$C_1$との交点のうち,$\mathrm{P}$以外の交点をそれぞれ$\mathrm{Q}_1$および$\mathrm{Q}_2$とする.このとき,直線$\mathrm{Q}_1 \mathrm{Q}_2$は再び$C_2$と接することを示せ.
昭和大学 私立 昭和大学 2013年 第3問
次の各問に答えよ.

(1)双曲線$\displaystyle H:\frac{x^2}{16}-\frac{y^2}{9}=1$について,次の問に答えよ.

(i) 双曲線$H$の焦点の座標を求めよ.
(ii) 双曲線$H$について正の傾きをもつ漸近線の方程式を求めよ.
(iii) $(ⅱ)$で求めた漸近線と直交する直線が$H$と接するとき,その接点の座標を求めよ.

(2)不等式$9a>b,\ \log_ab>\log_ba^4+3$をすべて満たす整数$a,\ b$の値を求めよ.
(3)直線$x-y+2=0$を$\ell$とし,直線$x+y-3=0$を$m$とする.$1$次変換$f$によって,直線$\ell$は$m$に移り,また直線$m$は$\ell$に移る.このとき,次の問に答えよ.

(i) $1$次変換$f$を表す行列$A$を求めよ.
(ii) $A^{2013}$を求めよ.
名城大学 私立 名城大学 2013年 第2問
図に示す一辺の長さが$10a (a>0)$の正方形$\mathrm{ABCD}$がある.辺上を車両が動くとき,次の問に答えよ.

(1)車両$\mathrm{Q}$が,一定の速度$a$で点$\mathrm{C}$を出発し,点$\mathrm{D}$を経由して点$\mathrm{A}$まで動くものとする.出発時刻を$t=0$とし,時間$t$経過後の点$\mathrm{A}$と車両$\mathrm{Q}$との直線距離を$t$と$a$を用いて表せ.
(2)$(1)$の条件下で,点$\mathrm{A}$と車両$\mathrm{Q}$との間で通信が行われる.通信に必要な電力$y$は,$2$点間の直線距離の$2$乗である.時間$t$経過後の電力$y$の変化を横軸に$t$,縦軸を$y$としたグラフに示せ.
(3)$(1)$の条件下で,車両$\mathrm{P}$が,一定の速度$a$で点$\mathrm{A}$を出発し,点$\mathrm{B}$を経由して点$\mathrm{C}$へ向かうものとする.出発時刻を$t=0$とし,時間$t$経過後の車両$\mathrm{P}$と車両$\mathrm{Q}$との直線距離の$2$乗$z$の変化を横軸に$t$,縦軸を$z$としたグラフに示せ.
(図は省略)
名城大学 私立 名城大学 2013年 第3問
$xy$平面上に,円
\[ \begin{array}{l}
C_1:x^2-12x+y^2-4y+15=0 \\
C_2:x^2-4x+y^2-2y-15=0
\end{array} \]
があり,$C_1$と$C_2$との$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とする.次の問に答えよ.

(1)$\mathrm{A}$,$\mathrm{B}$を通る直線の方程式を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$および原点を通る円の方程式を求めよ.
(3)原点を中心とし,$C_1$に外接する円の半径を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。