タグ「直線」の検索結果

127ページ目:全2462問中1261問~1270問を表示)
北海学園大学 私立 北海学園大学 2013年 第4問
曲線$C:y=e^x$上の点$(a,\ e^a)$における接線を$\ell$とする.曲線$C$,接線$\ell$,および$y$軸で囲まれてできる図形を$F$とする.ただし,$a$は定数とし,$a>1$である.

(1)接線$\ell$の方程式を$a$を用いて表せ.
(2)図形$F$の面積$S$を$a$を用いて表せ.
(3)$e^a(1-a) \geqq -1$とするとき,図形$F$を$x$軸のまわりに$1$回転してできる回転体の体積$V$を$a$を用いて表せ.
北海学園大学 私立 北海学園大学 2013年 第6問
座標平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ a+1)$,$\mathrm{B}(1,\ 3)$,$\mathrm{C}(2,\ 1)$について,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直であるとき,$a$の値を求めよ.また,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が平行であるとき,$a$の値を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$30^\circ$であるとき,$a$の値を求めよ.
(3)点$\mathrm{P}(x,\ y)$が直線$\ell:\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OC}}$上にあるとき,$y$を$x$を用いて表せ.また,点$\mathrm{A}$が$\ell$上にあるとき,$a$と$t$の値を求めよ.ただし,$t$は実数とする.
北海学園大学 私立 北海学園大学 2013年 第3問
関数$\displaystyle f(x)=\sin x+\cos x (-\frac{\pi}{2} \leqq x \leqq \pi)$について,曲線$C:y=f(x)$と$y$軸との交点を$\mathrm{A}$とする.

(1)曲線$C$と$x$軸との交点の座標をすべて求めよ.
(2)導関数$f^\prime(x)$を求めよ.また,曲線$C$上の点$\mathrm{A}$における接線$\ell$の方程式を求めよ.
(3)曲線$C$と接線$\ell$,および直線$\displaystyle x=-\frac{\pi}{4}$で囲まれた図形の面積を求めよ.
北海学園大学 私立 北海学園大学 2013年 第3問
正三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上にそれぞれ点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があり,$\mathrm{AD}=\mathrm{BE}=\mathrm{CF}=t$,$\mathrm{BD}=\mathrm{CE}=\mathrm{AF}=1-t$が成り立っている.さらに直線$\mathrm{AE}$と$\mathrm{CD}$の交点を$\mathrm{P}$,直線$\mathrm{BF}$と$\mathrm{AE}$の交点を$\mathrm{Q}$,直線$\mathrm{CD}$と$\mathrm{BF}$の交点を$\mathrm{R}$とする.ただし,$0<t<1$とする.

(1)線分$\mathrm{FR}$の長さを$t$を用いて表せ.
(2)三角形$\mathrm{ABC}$の面積は三角形$\mathrm{CFR}$の面積の何倍かを$t$を用いて表せ.
(3)三角形$\mathrm{ABC}$の面積が三角形$\mathrm{PQR}$の面積の$2$倍となるとき,$t$の値をすべて求めよ.
北海学園大学 私立 北海学園大学 2013年 第4問
座標平面において,放物線$C:y=-x^2+9$上の点$\mathrm{P}$の$x$座標を$a$とし,$0<a<3$とする.また,点$\mathrm{P}$を通り,$x$軸に平行な直線を$\ell$とし,点$\mathrm{P}$における$C$の接線を$m$とする.

(1)曲線$C$と直線$\ell$で囲まれた図形の面積$S_1$を$a$を用いて表せ.
(2)曲線$C$と直線$m$,および直線$x=3$で囲まれた図形の面積$S_2$を$a$を用いて表せ.
(3)$S_1+S_2$の最小値と,そのときの$a$の値を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$x$の整式$x^3+3mx^2+2(m^2-1)x-4$が$(x+2)^2$で割り切れるとする.このとき,$m$の値は$m=[ア]$であり,商は$[イ]$である.

(2)行列$A=\left( \begin{array}{cc}
x+1 & 2 \\
-5 & y-2
\end{array} \right)$がある.$A^2=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たすとき,$x$と$y$の値を求めると$(x,\ y)=[ウ]$である.また,$A$が逆行列をもたないような$2$つの正の整数$x$と$y$の値を求めると$(x,\ y)=[エ]$である.
(3)$a$は$1$ではない実数,$k$は$3$以上の整数とする.初項が$a$,第$2$項が$1$の等差数列があり,その第$k$項を$b$とする.$b$を$a$と$k$で表すと$b=[オ]$である.この$b$に対して,初項が$1$,第$2$項が$a$,第$3$項が$b$の数列が等比数列になるとき,$a$を$k$で表すと$a=[カ]$である.
(4)曲線$C:y=\log x$上の点$\mathrm{P}(2,\ \log 2)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{Q}$とする.$\mathrm{P}$における$C$の接線を$\ell$,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$とし,$m$と$x$軸との交点を$\mathrm{R}$とする.このとき,$m$の方程式を求めると$y=[キ]$である.また,$\triangle \mathrm{PQR}$の面積$S$を求めると$S=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の最大値が$6$となる確率は$[ケ]$であり,出た目の最大値と最小値の組が$(6,\ 1)$となる確率は$[コ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle x+\frac{1}{x}=3$のとき,$\displaystyle x^2+\frac{1}{x^2}=[ア]$であり,$x^3-5x^2+7x-2=[イ]$である.
(2)定義域を$\displaystyle 0 \leqq x \leqq \frac{\pi}{3}$とするとき,$f(x)=\cos 3x+\sin 3x$の最大値は$[ウ]$であり,最小値は$[エ]$である.
(3)ある工業製品の価格が前年比で毎年$10 \;\%$ずつ下落している.現在の価格が$1000$円であるならば,$3$年後の価格は$[オ]$円となり,価格がはじめて$200$円を下回るのは$[カ]$年後である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とし,解答欄には整数値を入れよ.
(4)曲線$y=x^3+1$と直線$\ell$が点$\mathrm{A}$で接している.また,曲線$y=x^2+ax+1 (a<0)$も$\ell$と$\mathrm{A}$で接している.このとき,$a=[キ]$であり,$\ell$の方程式は$[ク]$である.
(5)定数$a$に対して,$\displaystyle \int_a^x f(t) \, dt=x^2+x-6$であるとき,$f(x)=[ケ]$,$a=[コ]$である.
南山大学 私立 南山大学 2013年 第2問
平面上に曲線$C_1:y=|x^2-2|$と円$C_2$がある.$C_1$と$C_2$は,点$\mathrm{A}(a,\ a^2-2)$で共通の接線$\ell$を持ち,点$\mathrm{B}(0,\ 2)$でも共通の接線を持つ.ただし,$a>2$とする.

(1)$C_1$を図示せよ.
(2)$C_1$と$\ell$が$\mathrm{A}$で接することを利用して,$\ell$の方程式を$a$を用いて表せ.
(3)$\mathrm{A}$を通り$\ell$に直交する直線の方程式を$a$を用いて表せ.
(4)$C_2$の方程式を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \frac{2}{\sqrt{6}-2}$の整数部分を$a$,小数部分を$b$とする.このとき,$b$を$\sqrt{6}$を用いて表すと$b=[ア]$である.また,$a^2-ab-b^2=[イ]$である.
(2)実数$a,\ b$に対して,$3$次方程式$ax^3+(a-2)x^2+(b-3)x-b=0$が$x=1+i$を解として持つとき,$(a,\ b)=[ウ]$であり,この方程式の実数解は$[エ]$である.
(3)$2$次方程式$\displaystyle ax^2-\frac{1}{5}x-\frac{12}{25}=0$の$2$つの解がそれぞれ$\sin \theta$,$\cos \theta$であるとき,$a$の値は$[オ]$であり,$\sin^3 \theta+\cos^3 \theta$の値は$[カ]$である.
(4)直線$x-y=1$上を動く点$\mathrm{P}$がある.$3$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-3,\ 0)$,$\mathrm{C}(4,\ -1)$に対して,$\mathrm{PA}^2+\mathrm{PB}^2+\mathrm{PC}^2$の最小値は$[キ]$であり,このときの$\mathrm{P}$の座標は$[ク]$である.
(5)実数$a$に対して,$x$についての方程式$4^x+a \cdot 2^{x+2}+3a+1=0$が異なる$2$つの実数解を持つとき,$a$のとりうる値の範囲は$[ケ]<a<[コ]$である.
南山大学 私立 南山大学 2013年 第2問
$xy$平面上に$3$つの放物線$C_1:y=x^2$,$C_2:y=bx^2 (0<b<1)$および$C_3$がある.$C_3$は$C_2$上の点$(1,\ b)$を頂点とし,点$(0,\ b-1)$を通り,上に凸である.また,$C_1$と$C_3$は,ただ$1$つの共有点$\mathrm{A}$を持ち,$\mathrm{A}$を通る共通の接線$\ell$を持つ.

(1)$b$の値と$C_3$の方程式を求めよ.
(2)$\mathrm{A}$の座標と$\ell$の方程式を求めよ.
(3)$C_1$,$\ell$および$y$軸で囲まれた部分の面積を$S$とし,$C_3$,$\ell$および$y$軸で囲まれた部分の面積を$T$とする.$S=T$が成り立つことを示せ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。