タグ「直線」の検索結果

122ページ目:全2462問中1211問~1220問を表示)
島根大学 国立 島根大学 2013年 第1問
次の問いに答えよ.

(1)異なる$2$点$(-3,\ -3)$,$(a,\ b)$を通る直線の方程式を求めよ.ただし,$a,\ b$は実数とする.
(2)媒介変数表示$\left\{ \begin{array}{l}
x=2 \cos t \\
y=-\sin^2 t
\end{array} \right.$で表される曲線の概形をかけ.
(3)関数$\displaystyle f(t)=\frac{-\sin^2 t+3}{2\cos t+3}$の最大値および最小値を求めよ.
宮崎大学 国立 宮崎大学 2013年 第3問
平面上に,$1$辺の長さが$1$の正三角形$\mathrm{ABC}$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$とおく.また,直線$\mathrm{AC}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$を$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{1}{2}\overrightarrow{a}$,$\overrightarrow{\mathrm{CQ}}=2 \overrightarrow{b}$であるようにとる.線分$\mathrm{PQ}$の中点を$\mathrm{R}$とし,直線$\mathrm{AB}$上に点$\mathrm{D}$を$\mathrm{DR} \perp \mathrm{PQ}$であるようにとる.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{DR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{DR}$と直線$\mathrm{BC}$の交点を$\mathrm{E}$とするとき,線分$\mathrm{CE}$の長さを求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第1問
円$C_1:x^2-4x+y^2=0$と直線$\displaystyle \ell:y=\frac{\sqrt{3}}{3}x$がある.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,原点$\mathrm{O}$と異なるものを$\mathrm{A}$とする.点$\mathrm{A}$の座標を求めよ.さらに,原点$\mathrm{O}$を頂点とし,点$\mathrm{A}$を通る放物線$C_2$の方程式を$y=ax^2$とする.$a$の値を求めよ.
(2)直線$\ell$の傾きを$\tan \theta$と表す.そのときの$\theta$の値を求めよ.ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.
(3)円$C_1$と直線$\ell$で囲まれた図形のうち,直線$\ell$の上側にある部分の面積$S_1$を求めよ.
(4)円$C_1$と放物線$C_2$で囲まれた図形のうち,放物線$C_2$の上側にある部分の面積$S_2$を求めよ.
(5)放物線$C_2$の接線で,直線$\ell$とのなす角が$\displaystyle \frac{\pi}{4}$であるものを考える.そのすべてについて,接点の$x$座標を求めよ.
岐阜大学 国立 岐阜大学 2013年 第1問
$a,\ b$を正の実数とする.$xy$平面上の放物線$y=x^2-2ax$と直線$y=bx$は原点$\mathrm{O}$と点$\mathrm{A}$の異なる$2$点で交わる.また,放物線の頂点を$\mathrm{B}$とし,三角形$\mathrm{OAB}$を考える.以下の問に答えよ.

(1)点$\mathrm{A}$および点$\mathrm{B}$の座標を求めよ.
(2)三角形$\mathrm{OAB}$が直角三角形のとき,$a$と$b$の満たすべき条件を求めよ.
(3)$a=b$のとき,$\cos \angle \mathrm{AOB}$を$a$を用いて表せ.
(4)$a=b$のとき,三角形$\mathrm{OAB}$の面積を$a$を用いて表せ.
滋賀医科大学 国立 滋賀医科大学 2013年 第4問
$xy$平面において,連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
で定まる図形を$S$とする.$t$を$0<t<1$となる定数とし,$S$を直線$y=t$で$2$つの部分に切断する.$S_1$を$S$と領域$y \geqq t$の共通部分,$S_2$を$S$と領域$y \leqq t$の共通部分とする.

(1)図形$S_1,\ S_2$を描け.
(2)$S_1,\ S_2$を$y$軸の周りに$1$回転させてできる立体をそれぞれ$V_1,\ V_2$とする.不等式
\[ \frac{(S_1 \ \text{の面積})}{(S_2 \ \text{の面積})} \geqq \frac{(V_1 \ \text{の体積})}{(V_2 \ \text{の体積})} \]
を示せ.
愛媛大学 国立 愛媛大学 2013年 第2問
$2$つの直線$\ell_1:y=-2x+3$と$\ell_2:y=5$の交点を$\mathrm{A}$,$\ell_2$と$y$軸の交点を$\mathrm{B}$とする.

(1)点$\mathrm{A}$の座標を求めよ.
(2)$\mathrm{O}$を原点とする.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式を求めよ.
(3)(2)で求めた円を$C_1$とし,円$x^2+y^2=4$を$C_2$とする.

(i) 点$(\alpha,\ \beta)$が$C_1$と$C_2$の交点であるとき
\[ \alpha-5 \beta+4=0 \]
が成り立つことを示せ.
(ii) $C_1$と$C_2$の$2$つの交点を結ぶ線分の長さを求めよ.
愛媛大学 国立 愛媛大学 2013年 第3問
$f(x)=x^2-x$とする.

(1)放物線$y=f(x)$と直線$y=2x$で囲まれた図形の面積を求めよ.
(2)次の問いに答えよ.

(i) 関数$y=f(x)$と$y=2 |x|$のグラフの共有点の座標を求めよ.
(ii) 関数$y=f(x)$と$y=2 |x|+k$のグラフの共有点の個数が$2$となる定数$k$の値の範囲を求めよ.
岐阜大学 国立 岐阜大学 2013年 第2問
$xy$平面上に中心$(1,\ 0)$,半径$2$の円$C$がある.円$C$と$y$軸との交点のうち,$y$座標が負である点を$\mathrm{P}$とする.以下の問に答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{Q}$が円$C$の周から点$\mathrm{P}$を除いた部分を動くとき,線分$\mathrm{PQ}$の中点$\mathrm{R}$の軌跡を求めよ.
(3)点$\mathrm{Q}$は円$C$の周から点$\mathrm{P}$を除いた部分を動くとする.また,$k$を$1$以外の正の実数とし,線分$\mathrm{PQ}$を$k:1$に外分する点を$\mathrm{S}$とする.このとき点$\mathrm{S}$の軌跡を求めよ.
(4)$k=3$のとき,直線$\displaystyle y=x+a+\frac{\sqrt{3}}{2}$が(3)で求めた軌跡と共有点をもつような$a$の値の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第9問
放物線$y=x^2$を$C_1$,$C_1$と異なる放物線$y=ax^2+bx+c \ (a \neq 0)$を$C_2$とする.

(1)$a=1$のとき,$C_1$と$C_2$の両方に接する直線は最大でも$1$本しか存在しないことを示せ.
(2)$a=1$のとき,条件$b \neq 0$は条件

$C_1$と$C_2$の両方に接する直線が$1$本だけ存在する

の必要十分条件であることを示せ.
(3)条件$p_1,\ p_2,\ q_1,\ q_2$を次で定める.
\[ \begin{array}{ll}
p_1:C_2 \text{は下に凸である.} & p_2:C_2 \text{は上に凸である.} \\
q_1:C_1 \text{と} C_2 \text{が異なる}2 \text{点で交わる.} & q_2:C_1 \text{と} C_2 \text{が交わらない.}
\end{array} \]
$a \neq 1$のとき,条件

$p:$「$p_1$かつ$q_1$」または「$p_2$かつ$q_2$」

は条件

$q:C_1$と$C_2$の両方に接する直線が$2$本存在する

の必要十分条件であることを示せ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。