タグ「直線」の検索結果

119ページ目:全2462問中1181問~1190問を表示)
琉球大学 国立 琉球大学 2013年 第1問
$t$を$0 \leqq t<2$をみたす定数とする.放物線$y=(x-2)^2$上の点$(t,\ (t-2)^2)$における接線を$\ell$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)直線$\ell$と$x$軸の交点を求めよ.
(3)直線$\ell$と$x$軸,$y$軸によって囲まれる部分の面積を$S(t)$とする.$0 \leqq t<2$において$S(t)$が最大となるときの$t$の値と$S(t)$の値を求めよ.
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
山形大学 国立 山形大学 2013年 第1問
次の問いに答えよ.

(1)$2$つの循環小数$a=1. \dot{2}$,$b=0. \dot{8} \dot{1}$に対して,$ab$の値を求めよ.
(2)$a$を定数とする.$xy$平面上の曲線$y=\log_2x$と直線$y=x+a$は$2$つの共有点をもつ.共有点の$x$座標$x_1,\ x_2$が$x_2=4x_1$を満たすように,$a$の値を定めよ.
(3)$xy$平面において,曲線$\displaystyle C:y=\frac{1}{x} \ (x>0)$と直線$\displaystyle y=-x+\frac{10}{3}$の$2$つの共有点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$C$上の点$\mathrm{P}$が$\mathrm{PA}=\mathrm{PB}$を満たすとき,$\triangle \mathrm{PAB}$の面積を求めよ.
山形大学 国立 山形大学 2013年 第3問
関数$\displaystyle f(x)=\frac{1}{2}x^2 \ (x \geqq 0)$の逆関数を$f^{-1}(x)$とする.$xy$平面上に$2$曲線$C_1:y=f(x)$と$C_2:y=f^{-1}(x)$がある.次の問いに答えよ.

(1)$2$曲線$C_1,\ C_2$で囲まれた図形の面積を求めよ.
(2)$a \geqq 2$とする.曲線$C_1$上の点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{2} \right)$における接線を$\ell_1$,曲線$C_2$上の点$\displaystyle \mathrm{B} \left( \frac{a^2}{2},\ a \right)$における接線を$\ell_2$とし,$2$直線$\ell_1,\ \ell_2$のなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.

(i) $\tan \theta$を$a$の式で表せ.
(ii) $\displaystyle \lim_{a \to \infty} \sin^2 \theta$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面上の円$x^2+y^2-10x-10y+49=0$を$C$とする.原点$\mathrm{O}$を通り,円$C$に接する直線のうち,傾きの大きい方を$\ell$とする.

(1)$\ell$の傾きを求めよ.
(2)$x$軸に接し,円$C$と外接するような円の中心$\mathrm{P}$の描く軌跡を求めよ.
(3)直線$\ell$と$x$軸に接し,さらに円$C$と外接する円の半径をすべて求めよ.
東京農工大学 国立 東京農工大学 2013年 第1問
$a$を実数とする.行列
\[ A=\left( \begin{array}{cc}
a & 3 \\
-2 & -1
\end{array} \right),\quad P=\left( \begin{array}{cc}
1 & 3 \\
-1 & -2
\end{array} \right) \]
について,次の問いに答えよ.

(1)$P^{-1}AP$の$(1,\ 2)$成分と$(2,\ 1)$成分が等しくなるような$a$の値を求めよ.
(2)$a$を(1)で求めた値とするとき,自然数$n$に対して$A^n$を求めよ.
(3)$a$を(1)で求めた値とするとき,$A^n$が表す$1$次変換によって,$xy$平面上の$2$点$\mathrm{Q}(1,\ -1)$と$\mathrm{R}(0,\ 2)$とが移る$2$点を通る直線を$L_n$とおく.$L_n$の$y$切片を$y_n$とするとき,$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
東京農工大学 国立 東京農工大学 2013年 第2問
$xyz$空間に点$\mathrm{P}(0,\ 0,\ 5)$がある.次の問いに答えよ.

(1)球面$x^2+y^2+(z-2)^2=9$と平面$\displaystyle x=\frac{1}{2}$が交わってできる円を$C$とする.$C$の中心の座標と半径を求めよ.
(2)$C$上に点$\displaystyle \mathrm{Q} \left( \frac{1}{2},\ s,\ t \right)$をとったとき,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線と$xy$平面との交点を$\mathrm{R}(X,\ Y,\ 0)$とする.$X,\ Y$それぞれを$s,\ t$の式で表せ.
(3)$\mathrm{Q}$が$C$上のすべての点を動くとき,$\mathrm{R}$が描く曲線を$C^\prime$とする.$C^\prime$の長さ$L$を求めよ.
東京農工大学 国立 東京農工大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)=\log (x+\sqrt{x^2+1})$とする.ただし,対数は自然対数とする.

(i) $f(x)$の導関数$f^\prime(x)$を求めよ.
(ii) 直線$y=x$と直線$\displaystyle x=\frac{3}{4}$および曲線$y=f(x)$で囲まれた部分の面積$S$を求めよ.

(2)$\displaystyle \alpha=\frac{2}{5}\pi$とする.

(i) $\cos 3\alpha=\cos 2\alpha$が成り立つことを用いて,$\cos \alpha$と$\cos 2\alpha$の値を求めよ.
(ii) $2$個のさいころを同時に投げるとき,出る目の数の和を$N$とする.このとき,座標平面上の点$\mathrm{P}(1,\ \sqrt{3})$を原点$\mathrm{O}$のまわりに角$N \alpha$だけ回転した点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積を$T$とする.$T$の期待値を求めよ.
三重大学 国立 三重大学 2013年 第1問
$a,\ b$を実数とし,$i$を虚数単位とする.$2$次方程式$x^2+ax+b=0$の解の$1$つが$1-\sqrt{2}i$であるとき,以下の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$2$次関数$y=x^2+ax+b$のグラフの軸と頂点を求め,そのグラフをかけ.
(3)曲線$y=x^2+ax+b$と直線$y=3$とで囲まれた部分の面積を求めよ.
大分大学 国立 大分大学 2013年 第3問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$|\overrightarrow{a}|=\sqrt{3}$,$|\overrightarrow{b}|=\sqrt{2}$,$\overrightarrow{a} \cdot \overrightarrow{b}=t$とする.点$\mathrm{A}$から直線$\mathrm{OB}$に垂線$\mathrm{AP}$を下ろし,点$\mathrm{B}$から直線$\mathrm{OA}$に垂線$\mathrm{BQ}$を下ろし,直線$\mathrm{AP}$と直線$\mathrm{BQ}$の交点を$\mathrm{R}$とする.

(1)$t$の範囲を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$t$と$\overrightarrow{b}$で,$\overrightarrow{\mathrm{OQ}}$を$t$と$\overrightarrow{a}$で表しなさい.
(3)$t=1$のとき,$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表し,$|\overrightarrow{\mathrm{OR}}|$を求めなさい.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。