タグ「直線」の検索結果

117ページ目:全2462問中1161問~1170問を表示)
茨城大学 国立 茨城大学 2013年 第1問
原点を$\mathrm{O}$とする座標平面上を運動する点$\mathrm{P}(x,\ y)$が
\[ x=\sin t,\quad y=\sin 2t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
で表されるとき,点$\mathrm{P}$の描く曲線を$C$とする.($C$は右図のように \\
なっている.)以下の各問に答えよ.
\img{85_2188_2013_1}{40}


(1)曲線$C$と$x$軸が囲む図形の面積を求めよ.
(2)$\displaystyle 0<t<\frac{\pi}{2}$のとき,点$\mathrm{P}$における$C$の接線$\ell$の方程式を求めよ.
(3)$\displaystyle 0<t<\frac{\pi}{2}$のとき,(2)の接線$\ell$の傾きが負になる$t$の範囲を求めよ.
(4)$t$が(3)で求めた範囲にあるとき,$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,三角形$\mathrm{OPQ}$と三角形$\mathrm{OPR}$の面積をそれぞれ$S$と$T$とする.$c=\cos t$として,$S,\ T$をそれぞれ$c$を用いて表せ.
(5)(4)の$S$と$T$について$S=T$が成り立つとき,直線$\mathrm{OP}$の方程式を求めよ.
茨城大学 国立 茨城大学 2013年 第2問
$f(x)=x^3-x+5$として,曲線$y=f(x)$を$C$とする.点$\mathrm{P}(a,\ f(a))$における$C$の接線を$\ell$,法線を$n$とする.以下の各問に答えよ.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通り,かつ点$\mathrm{P}$における$C$の接線に直交する直線のことである.

(1)$\ell,\ n$の方程式をそれぞれ求めよ.
(2)$\ell$と$C$の共有点で,$\mathrm{P}$以外のものの個数を求めよ.
(3)$\displaystyle |a|<\frac{1}{\sqrt{3}}$のときには,$n$と$C$との共有点が$\mathrm{P}$以外にも存在することを示せ.
宇都宮大学 国立 宇都宮大学 2013年 第1問
数直線上の動点$\mathrm{P}$はさいころを投げて偶数が出れば$+1$,奇数が出れば$-1$移動する.$\mathrm{P}$の最初の位置(座標)を$\mathrm{P}_0=0$とし,さいころを$k$回投げたときの$\mathrm{P}$の位置(座標)を順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_k$とする.このとき,次の問いに答えよ.

(1)さいころを$4$回投げたとき,$\mathrm{P}_4=2$となる確率を求めよ.
(2)さいころを$8$回投げたとき,$\mathrm{P}_8=n$となる確率を$n$を用いて表せ.ただし,$n$は$-8 \leqq n \leqq 8$をみたす整数である.
(3)さいころを$4$回投げたとき,$\mathrm{P}_1+\mathrm{P}_2+\mathrm{P}_3+\mathrm{P}_4$が$0$以上となる確率を求めよ.
(4)さいころを$3$回投げたとき,$\mathrm{P}_1+\mathrm{P}_2-\mathrm{P}_3$の期待値を求めよ.
宇都宮大学 国立 宇都宮大学 2013年 第3問
$\triangle \mathrm{ABC}$において,内部の点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{PB}}+2 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{AP}}$であるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)比$\mathrm{AP}:\mathrm{PD}$と$\mathrm{BD}:\mathrm{DC}$を求めよ.
(3)直線$\mathrm{AP}$が$\triangle \mathrm{PBC}$の外接円の中心を通るとする.その外接円の半径を$1$とし,$\angle \mathrm{BPC}=120^\circ$とするとき,辺$\mathrm{BC}$の長さを求めよ.
(4)(3)と同じ条件のもとで,$\overrightarrow{\mathrm{PB}}$と$\overrightarrow{\mathrm{PC}}$の内積を求めよ.
東京学芸大学 国立 東京学芸大学 2013年 第2問
座標平面上に,点$\mathrm{A}(0,\ -2)$と円$C:x^2+(y-2)^2=4$がある.円$C$上の点$\mathrm{P}$に対し,線分$\mathrm{AP}$の中点を$\mathrm{M}$,$\mathrm{M}$を通り$\mathrm{AP}$に垂直な直線を$\ell$とする.下の問いに答えよ.

(1)点$\mathrm{P}$が円$C$上を動くとき,点$\mathrm{M}$の軌跡を求めよ.
(2)直線$\ell$が円$C$に接するとき,点$\mathrm{M}$の座標を求めよ.
(3)点$\mathrm{P}$が円$C$上を動くとき,直線$\ell$が通る点全体の領域を求め,図示せよ.
奈良教育大学 国立 奈良教育大学 2013年 第3問
$2$つの円
\[ \left\{ \begin{array}{l}
C_1:x^2+y^2=5, \\
C_2:x^2+y^2-8x+6y=0
\end{array} \right. \]
について,次の設問に答えよ.

(1)$2$つの円$C_1,\ C_2$の共有点を通る直線の$y$切片を求めよ.
(2)$2$つの円$C_1,\ C_2$の共有点と$C_2$の中心$\mathrm{O}_2$を通る円$C_3$の方程式を求めよ.
奈良教育大学 国立 奈良教育大学 2013年 第4問
関数$f(x)$を
\[ f(x)=2 \sin \left( \frac{1}{2} \left( x+\frac{\pi}{3} \right) \right) \quad (0 \leqq x \leqq 2\pi) \]
とする.このとき,次の設問に答えよ.

(1)曲線$y=f(x)$と$y$軸との交点$\mathrm{P}$の座標を求めよ.
(2)曲線$y=f(x)$と$x$軸との交点$\mathrm{Q}$の座標を求めよ.
(3)曲線$y=f(x)$のグラフを描け.
(4)$\mathrm{P}$と$\mathrm{Q}$を結んだ直線を$\ell$とする.曲線$y=f(x)$と直線$\ell$で囲まれた領域の面積を求めよ.
電気通信大学 国立 電気通信大学 2013年 第4問
座標平面上の$2$つの直線$\ell,\ m$を,それぞれ
\[ \ell:y=\frac{1}{\sqrt{3}}x,\quad m:y=-\frac{1}{\sqrt{3}}x \]
とし,$\ell$上に点$\mathrm{A}(\sqrt{3}s,\ s)$を,$m$上に点$\mathrm{B}(\sqrt{3}t,\ -t)$をとる. \\
ただし,$s>0$,$t>0$とする.さらに,正三角形$\mathrm{ABC}$を,頂点$\mathrm{C}$が直線$\mathrm{AB}$に関して原点$\mathrm{O}$と同じ側になるように定める.このとき,以下の問いに答えよ.
\img{178_2358_2013_1}{50}


(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一円周上にあることを示し,点$\mathrm{C}$が$y$軸上にあることを証明せよ.
(2)点$\mathrm{C}$の$y$座標を$s,\ t$の式で表せ.
(3)点$\mathrm{D}(X,\ Y)$を,直線$\mathrm{AB}$に関して点$\mathrm{C}$と対称な点とする.このとき,$X$と$Y$をそれぞれ$s,\ t$の式で表せ.
(4)線分$\mathrm{AB}$の長さを$s,\ t$の式で表せ.
(5)点$\mathrm{A}$,$\mathrm{B}$が線分$\mathrm{AB}$の長さを$\sqrt{3}$に保ちながら動くとき,点$\mathrm{D}$の軌跡を求め,その概形を図示せよ.
防衛医科大学校 国立 防衛医科大学校 2013年 第1問
以下の問に答えよ.

(1)$\mathrm{AB}=\mathrm{AC}$である二等辺三角形$\mathrm{ABC}$において辺$\mathrm{AC}$上に$\mathrm{AD}=\mathrm{BD}=\mathrm{BC}$となる点$\mathrm{D}$をとることができるとき,$\displaystyle \sin \frac{A}{2}$はいくらか.
(2)実数の組$(x,\ y)$が連立不等式$\left\{ \begin{array}{l}
x^2+y^2 \leqq 4 \\
y \geqq \displaystyle\frac{x^2}{\sqrt{2}}
\end{array} \right.$を満たすとき,$\sqrt{2}x+y$の最大値と最小値を求めよ.
(3)座標空間の$2$点$\mathrm{A}(1,\ -2,\ -1)$,$\mathrm{B}(4,\ 2,\ 4)$を通る直線$\ell_1$上にあり,原点までの距離が$34$の点を$\mathrm{C}$($\mathrm{C}$の$x$座標は正とする).点$\mathrm{A}$を通り方向ベクトル$\overrightarrow{h}=(4,\ -3,\ -5)$をもつ直線を$\ell_2$とする.このとき,$\mathrm{C}$と$\ell_2$を含む平面において,$\ell_2$に関して$\mathrm{C}$と対称な点$\mathrm{D}$の座標を求めよ.
和歌山大学 国立 和歌山大学 2013年 第4問
$\displaystyle 0<a<\frac{1}{3},\ b>0$とする.放物線$y=x^2-2a^2x$の$x \geqq 0$の部分を曲線$C$とする.直線$\ell:y=b$と$C$とが$0<x<a$の範囲で交わっている.さらに,$C$と$\ell$と$y$軸で囲まれる部分の面積と,$C$と$\ell$と直線$x=a$で囲まれる部分の面積が等しい.このとき,次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$b$を最大にする$a$の値と,そのときの$b$の値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。