タグ「直線」の検索結果

116ページ目:全2462問中1151問~1160問を表示)
佐賀大学 国立 佐賀大学 2013年 第3問
$x$軸,$y$軸,$z$軸を座標軸,原点を$\mathrm{O}$とする座標空間において,$z$軸 \\
を中心軸とする半径$1$の円柱を考える.次に,$x$軸を含み$xy$平面と \\
のなす角が$\displaystyle \frac{\pi}{4}$となる平面を$\alpha$とし,平面$\alpha$による円柱の切り口の \\
曲線を$C$とする.また,点$\mathrm{A}(1,\ 0,\ 0)$とする.さらに,曲線$C$上 \\
の点$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PQ}$とし,$\angle \mathrm{AOQ}=\theta$ \ \\
$(0 \leqq \theta<2\pi)$とする.このとき,次の問に答えよ.
\img{711_2927_2013_1}{48}

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{A}$を通り$z$軸に平行な直線を$\ell$とする.$\ell$によって円柱の側面を切り開いた展開図の上に,曲線$C$の概形をかけ.
(3)図のように,平面$\alpha$と$yz$平面の交線を$Y$軸とする.$xY$平面における曲線$C$の方程式を求め,その概形をかけ.
(図は省略)
旭川医科大学 国立 旭川医科大学 2013年 第4問
次の問いに答えよ.

(1)関数$y=x \log x-x \ (x>0)$の増減を調べ,そのグラフをかけ.
(2)$a$を正の実数とする.曲線$C:y=\log (x+1)$上の点$(t,\ \log (t+1))$における接線$\ell_t$が,曲線$C_a:y=a \log x$上の点$(s,\ a \log s)$における接線にもなっているとき,$t$と$s$の関係を$a$を含まない式で表せ.
(3)任意に与えられた$t>-1$に対して,直線$\ell_t$が曲線$C_a$の接線にもなっているような$a$が唯一つ存在すること,および$a>1$であることを示せ.
(4)直線$\ell_t$が曲線$C_a$の接線になっているとき,その接点の$x$座標を$s(t)$とかくことにする.$s(t)$を$t$の関数とみて増減を調べ,さらに$\displaystyle \lim_{t \to \infty}(s(t)-t)$を求めよ.
小樽商科大学 国立 小樽商科大学 2013年 第3問
次の$[ ]$の中を適当に補いなさい.

(1)$2$つのベクトル$\overrightarrow{a}=(-1,\ 2)$,$\overrightarrow{b}=(x,\ 1)$について,$2 \overrightarrow{a}-3 \overrightarrow{b}$と$\overrightarrow{a}+2 \overrightarrow{b}$が垂直になるように,実数$x$を定めると$x=[ ]$.
(2)青玉$10$個,黄玉$10$個,黒玉$10$個,緑玉$10$個,赤玉$10$個の合計$50$個が入った壺がある.最初に$1$個とり出して,見ずに箱にしまっておく.その後,壺から$1$個ずつ玉を戻さずに$3$回とり出したら,$3$個とも赤玉であった.箱にしまっておいた玉が赤玉である確率は$[ ]$.
(3)曲線$y=-x(x-2)$と$x$軸で囲まれた面積を,直線$y=(-a+2)x$が$2$等分するとき,定数$a$を定めると$a=[ ]$.
小樽商科大学 国立 小樽商科大学 2013年 第5問
双曲線$\displaystyle y=\frac{1}{x}+\frac{4}{3}$を$C_1$,曲線$\displaystyle y=-\frac{1}{3}x^3+a$を$C_2$,$C_2$と$x$軸の交点を通る$y$軸と平行な直線を$L$とする.ただし$a$は実数とする.このとき,次の問いに答えよ.

(1)$C_1$と$C_2$が第一象限で接するとき,$a$の値を求めよ.
(2)$(1)$で求めた$a$に対して,$C_1$と$C_2$と$L$で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第1問
$a,\ b$を定数とし,$a \neq 0$とする.関数$f(x)=ax^2-4x+b$は,条件
\[ x^2f^{\prime\prime}(x)-xf^\prime(x)+f(x)=x^2+8 \]
を満たすとする.

(1)$a,\ b$の値を求めよ.
(2)直線$\ell$が,放物線$y=x^2$の接線であり,かつ放物線$y=f(x)$の接線でもあるとき,$\ell$の方程式を求めよ.
(3)$2$つの放物線$y=x^2$と$y=f(x)$,および$(2)$で求めた接線$\ell$で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第4問
平面上の$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$は互いに異なる点とする.三角形$\mathrm{OAB}$において
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=3 \]
かつ$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$60^\circ$とする.$\ell$は点$\mathrm{A}$を通り$\overrightarrow{\mathrm{OA}}$が法線ベクトルである直線,$m$は点$\mathrm{B}$を通り$\overrightarrow{\mathrm{AB}}$が法線ベクトルである直線とする.また,$\ell$と$m$は点$\mathrm{P}$で交わるとする.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{AP}}$であることを用いて,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$を求めよ.
(2)内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}}$を求めよ.
(3)$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$を満たす実数$s,\ t$の値を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第5問
$s,\ t$を実数とする.行列$A=\left( \begin{array}{cc}
-\displaystyle\frac{1}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
s & t
\end{array} \right)$は逆行列$A^{-1}$をもち,$A^{-1}=A$であるとする.

(1)$s,\ t$の値を求めよ.
(2)行列$A$は直線$y=mx$($m$は実数)に関する対称移動を表している.$m$の値を求めよ.
佐賀大学 国立 佐賀大学 2013年 第4問
関数$f(x)=xe^{-2x}$に関して次の問に答えよ.ただし,$e$は自然対数の底である.

(1)曲線$y=f(x)$の概形をかけ.必要ならば,$\displaystyle \lim_{x \to \infty}xe^{-2x}=0$を使ってよい.
(2)曲線$y=f(x)$の接線のうちで傾きが最小となるものを$\ell$とする.その接線$\ell$の方程式と接点$(a,\ f(a))$を求めよ.
(3)$x<a$において,接線$\ell$は曲線$y=f(x)$より常に上側にあることを証明せよ.ただし,$a$は(2)で求めたものとする.
(4)曲線$y=f(x)$,接線$\ell$,および$y$軸で囲まれた図形の面積$S$を求めよ.
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の各問に答えよ.

(1)$\overrightarrow{\mathrm{AM}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき$t$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.以下の各問に答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき,$t$の値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。