タグ「直線」の検索結果

115ページ目:全2462問中1141問~1150問を表示)
高知大学 国立 高知大学 2013年 第2問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CD}=3$,$\mathrm{DA}=4$とする.このとき,次の問いに答えよ.

(1)$\mathrm{AC}$を求めよ.
(2)$\sin \angle \mathrm{ABC}$を求めよ.
(3)$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線$\mathrm{AE}$の長さを求めよ.
(4)$\sin \angle \mathrm{ACB}$を求めよ.
(5)四角形$\mathrm{ABCD}$の面積を求めよ.
秋田大学 国立 秋田大学 2013年 第3問
空間内の点$\mathrm{P}(1,\ -1,\ -2)$を出発して,$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$で向きを変えてもとの点$\mathrm{P}$に戻る折れ線$\mathrm{PQRSP}$を,$\overrightarrow{\mathrm{PQ}}=(-2,\ 4,\ 5)$,$\overrightarrow{\mathrm{QR}}=(2,\ 1,\ 1)$,$\overrightarrow{\mathrm{RS}}=(-3,\ -4,\ -2)$となるように定める.このとき,次の問いに答えよ.

(1)点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$の座標をそれぞれ求めよ.
(2)平面上の点$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$,$\mathrm{S}^\prime$を,それぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$の$x,\ y$座標を取り出して得られる点とする.例えば,点$\mathrm{P}^\prime$の座標は$(1,\ -1)$となる.このとき,平面上の線分$\mathrm{P}^\prime \mathrm{Q}^\prime$と線分$\mathrm{R}^\prime \mathrm{S}^\prime$の交点$\mathrm{M}^\prime$を求めよ.
(3)線分$\mathrm{PQ}$上の点$\mathrm{M}_1$と線分$\mathrm{RS}$上の点$\mathrm{M}_2$を,$\mathrm{M}_1$の$x,\ y$座標が$\mathrm{M}_2$の$x,\ y$座標とそれぞれ等しくなる点とする.$2$点$\mathrm{M}_1$,$\mathrm{M}_2$間の距離を求めよ.
(4)空間内の点$\mathrm{X}$が,点$\mathrm{Q}$を出発して点$\mathrm{P}$まで,$\mathrm{Q} \to \mathrm{R} \to \mathrm{S} \to \mathrm{P}$の順に折れ線上を動く.点$\mathrm{X}$から直線$\mathrm{PQ}$上に垂線を引き,その交点を$\mathrm{H}$とする.点$\mathrm{H}$が$\overrightarrow{\mathrm{PQ}}$と同じ向きに動いた距離の総和と,逆の向きに動いた距離の総和を,それぞれ求めよ.
徳島大学 国立 徳島大学 2013年 第3問
$\mathrm{O}$を原点とする座標空間において,点$\mathrm{A}(-4,\ 8,\ 2)$を通りベクトル$\overrightarrow{u}=(3,\ 0,\ 1)$に平行な直線を$\ell$とする.また,点$\mathrm{B}(10,\ 3,\ -4)$を通りベクトル$\overrightarrow{v}=(-1,\ 3,\ 0)$に平行な直線を$m$とする.$\mathrm{P}$を$\ell$上の点とし,$\mathrm{Q}$を$m$上の点とする.このとき,実数$s,\ t$を用いて,$\overrightarrow{\mathrm{AP}}=s \overrightarrow{u}$,$\overrightarrow{\mathrm{BQ}}=t \overrightarrow{v}$と表すことができる.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$の成分を$s,\ t$を用いて表せ.
(2)$2$直線$\ell$と$m$は共有点をもたないことを証明せよ.
(3)ベクトル$\overrightarrow{\mathrm{PQ}}$がベクトル$\overrightarrow{u},\ \overrightarrow{v}$の両方に垂直となるとき,点$\mathrm{P}$および点$\mathrm{Q}$の座標を求めよ.
香川大学 国立 香川大学 2013年 第4問
曲線$\displaystyle C:y=\frac{\log x}{x}$について,次の問に答えよ.

(1)曲線$C$の概形をかけ.
(2)$C$の変曲点$\mathrm{P}$における,$C$の接線$\ell$の方程式を求めよ.
(3)$\ell$と$C$は,$\mathrm{P}$以外に共有点をもたないことを示せ.
香川大学 国立 香川大学 2013年 第1問
次の問に答えよ.

(1)座標平面上の原点$\mathrm{O}$を通り,$x$軸とのなす角が$30^\circ$で傾きが正の直線と,放物線$y=x^2$の交点で$\mathrm{O}$と異なるものを$\mathrm{A}$とおく.点$\mathrm{A}$の座標を求めよ.
(2)線分$\mathrm{OA}$を$1$辺とする正方形$\mathrm{OABC}$をつくる.ただし,点$\mathrm{C}$は第$2$象限にとる.点$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
(3)直線$\mathrm{OB}$に垂直で,放物線$y=x^2$に接する直線の方程式を求めよ.
香川大学 国立 香川大学 2013年 第5問
次の問に答えよ.

(1)曲線$C:y=x^3e^{-x}$の概形をかけ.
(2)原点を通り傾きが正の直線$\ell$は,曲線$C$に点$\mathrm{P}$で接している.このとき,$\ell$の方程式および$\mathrm{P}$の座標を求めよ.
佐賀大学 国立 佐賀大学 2013年 第4問
点$(0,\ a)$を中心とする半径$r$の円$C$と放物線$F:y=x^2$を考える.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)円$C$と放物線$F$が点$(b,\ b^2)$で同じ接線を持つとする.ただし,$b>0$とする.このとき,$C$の中心と点$(b,\ b^2)$を結ぶ直線の傾きを$b$を用いて表せ.また,$r$を$b$を用いて表せ.
(2)(1)において$r=1$とする.このとき,$C$と$F$で囲まれた図形の面積$S$を求めよ.
(3)$C$と$F$の共有点が原点のみであるための$r$の条件を求めよ.
佐賀大学 国立 佐賀大学 2013年 第4問
$\alpha>1$とする.曲線$C:y=x^\alpha \ (x>0)$上の点$\mathrm{P}(p,\ p^\alpha)$における$C$の接線と$y$軸の交点を$\mathrm{Q}$とし,$x$軸上に点$\mathrm{R}$を$\mathrm{PR}=\mathrm{PQ}$をみたすようにとる.ただし,点$\mathrm{R}$の$x$座標は点$\mathrm{P}$の$x$座標より小さいものとする.このとき,次の問に答えよ.

(1)点$\mathrm{Q}$の$y$座標を求めよ.
(2)点$\mathrm{R}$の$x$座標を求めよ.
(3)$x$軸と直線$\mathrm{RP}$のなす鋭角を$\theta$とするとき,$\displaystyle \lim_{p \to \infty}\theta=\frac{\pi}{4}$をみたす$\alpha$の値を求めよ.
佐賀大学 国立 佐賀大学 2013年 第2問
$\alpha>1$とする.曲線$C:y=x^\alpha \ (x>0)$上の点$\mathrm{P}(p,\ p^\alpha)$における$C$の接線と$y$軸の交点を$\mathrm{Q}$とし,$x$軸上に点$\mathrm{R}$を$\mathrm{PR}=\mathrm{PQ}$をみたすようにとる.ただし,点$\mathrm{R}$の$x$座標は点$\mathrm{P}$の$x$座標より小さいものとする.このとき,次の問に答えよ.

(1)点$\mathrm{Q}$の$y$座標を求めよ.
(2)点$\mathrm{R}$の$x$座標を求めよ.
(3)$x$軸と直線$\mathrm{RP}$のなす鋭角を$\theta$とするとき,$\displaystyle \lim_{p \to \infty}\theta=\frac{\pi}{4}$をみたす$\alpha$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2013年 第2問
$a$を正の実数とする.双曲線$C:x^2-a^2y^2+a^2=0$上の$4$点$\mathrm{A}_1(0,\ 1)$,$\mathrm{A}_2(0,\ -1)$,$\mathrm{A}_3(a,\ \sqrt{2})$,$\mathrm{A}_4(-2a,\ -\sqrt{5})$が与えられている.$\mathrm{A}_1$における$C$の接線を$\ell_1$,$\mathrm{A}_3$における$C$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$\ell_1$と$\ell_3$の交点$\mathrm{S}$の座標を求めよ.
(2)直線$\mathrm{A}_1 \mathrm{A}_2$と直線$\mathrm{A}_3 \mathrm{A}_4$の交点$\mathrm{U}$の座標,および直線$\mathrm{A}_1 \mathrm{A}_4$と直線$\mathrm{A}_2 \mathrm{A}_3$の交点$\mathrm{V}$の座標を求めよ.
(3)$3$点$\mathrm{S}$,$\mathrm{U}$,$\mathrm{V}$が同一線上にあることを示せ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。