タグ「直線」の検索結果

114ページ目:全2462問中1131問~1140問を表示)
岩手大学 国立 岩手大学 2013年 第4問
平面上の一直線上にない$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を考える.線分$\mathrm{PQ}$の中点を$\mathrm{A}$とし,$\mathrm{O}$を端点とし$\mathrm{A}$の方向に伸びた半直線$\mathrm{OA}$上の点を$\mathrm{B}$とする.点$\mathrm{B}$が$|\overrightarrow{\mathrm{OA}}| |\overrightarrow{\mathrm{OB}}|=1$を満たすとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|=1$のとき,$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{\mathrm{OP}}$の内積を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$x>0$のとき,$\displaystyle e^{2x}>\frac{x^2}{2}$となることを示せ.
(2)$A=\left( \begin{array}{cc}
0 & p \\
1 & 0
\end{array} \right)$($p$は実数)について,$A^4=E$かつ$A^2 \neq E$のとき,$p$の値を求めよ.ただし,$E$は単位行列とする.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
(4)$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 2 \sqrt{3})$,$\mathrm{B}(1,\ 0)$をとる.点$\mathrm{A}$を通り,直線$\mathrm{OA}$に直交する直線上に$\mathrm{OA}=\mathrm{AC}$となる点$\mathrm{C}$をとる.$\angle \mathrm{COB}=\theta$とするとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
岩手大学 国立 岩手大学 2013年 第4問
平面上の一直線上にない$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を考える.線分$\mathrm{PQ}$の中点を$\mathrm{A}$とし,$\mathrm{O}$を端点とし$\mathrm{A}$の方向に伸びた半直線$\mathrm{OA}$上の点を$\mathrm{B}$とする.点$\mathrm{B}$が$|\overrightarrow{\mathrm{OA}}| |\overrightarrow{\mathrm{OB}}|=1$を満たすとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|=1$のとき,$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{\mathrm{OP}}$の内積を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第3問
空間内に$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$と点$\mathrm{O}$があり,
\[ |\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{CO}}|=|\overrightarrow{\mathrm{DO}}| \]
を満たしている.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,次の問いに答えよ.

(1)空間内の点$\mathrm{P}$について,$l,\ m,\ n$を実数とし,
\[ \overrightarrow{\mathrm{AP}}=l \overrightarrow{b}+m \overrightarrow{c}+n \overrightarrow{d} \]
とする.このとき,$|\overrightarrow{\mathrm{AP}}|^2$,$|\overrightarrow{\mathrm{BP}}|^2$をそれぞれ$l,\ m,\ n$を用いて表せ.また,$|\overrightarrow{\mathrm{AP}}|^2=|\overrightarrow{\mathrm{BP}}|^2$であるための必要十分条件を$l,\ m,\ n$を用いて表せ.
(2)$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{1}{4}(\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d})$であることを示せ.
(3)線分$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$とする.$3$点$\mathrm{A}$,$\mathrm{C}$,$\mathrm{D}$を通る平面と直線$\mathrm{EO}$との交点を$\mathrm{F}$とするとき,$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{c}$,$\overrightarrow{d}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2013年 第3問
空間内に$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$と点$\mathrm{O}$があり,
\[ |\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{CO}}|=|\overrightarrow{\mathrm{DO}}| \]
を満たしている.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,次の問いに答えよ.

(1)空間内の点$\mathrm{P}$について,$l,\ m,\ n$を実数とし,
\[ \overrightarrow{\mathrm{AP}}=l \overrightarrow{b}+m \overrightarrow{c}+n \overrightarrow{d} \]
とする.このとき,$|\overrightarrow{\mathrm{AP}}|^2$,$|\overrightarrow{\mathrm{BP}}|^2$をそれぞれ$l,\ m,\ n$を用いて表せ.また,$|\overrightarrow{\mathrm{AP}}|^2=|\overrightarrow{\mathrm{BP}}|^2$であるための必要十分条件を$l,\ m,\ n$を用いて表せ.
(2)$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{1}{4}(\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d})$であることを示せ.
(3)線分$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$とする.$3$点$\mathrm{A}$,$\mathrm{C}$,$\mathrm{D}$を通る平面と直線$\mathrm{EO}$との交点を$\mathrm{F}$とするとき,$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{c}$,$\overrightarrow{d}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2013年 第4問
$2$曲線$\displaystyle C_1:y=\left( x-\frac{1}{2} \right)^2-\frac{1}{2}$,$\displaystyle C_2:y=\left( x-\frac{5}{2} \right)^2-\frac{5}{2}$の両方に接する直線を$\ell$とするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1,\ C_2$と直線$\ell$で囲まれた図形の面積$S$を求めよ.
秋田大学 国立 秋田大学 2013年 第3問
大小$2$個のさいころを投げて,出る目をそれぞれ$a,\ b$とする.次の問いに答えよ.

(1)$xy$平面上の$2$直線$\displaystyle y=\frac{1}{a}x+1,\ y=(b+1)x$のなす鋭角を$\theta$とする.

\mon[$①$] $\tan \theta$を$a$と$b$を用いて表せ.
\mon[$②$] $\tan \theta \leqq 1$となる確率を求めよ.

(2)$xy$平面上で,連立不等式$x \geqq 0,\ y \geqq 0,\ 2x+y \leqq 4$の表す領域を$D$とする.点$(x,\ y)$がこの領域$D$を動くとき,$\displaystyle \frac{b}{a}x+y$の最大値を$M$とする.

\mon[$①$] $\displaystyle \frac{b}{a} \leqq 2$のとき,$M$を求めよ.
\mon[$②$] $\displaystyle \frac{b}{a}>2$のとき,$M$を$a$と$b$を用いて表せ.
\mon[$③$] $M$の期待値を求めよ.
秋田大学 国立 秋田大学 2013年 第1問
円$x^2+y^2=1$を$C_1$とし,点$\mathrm{P}(0,\ -1)$を通り,傾きが$m$の直線を$\ell$とする.ただし,$m>1$である.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.さらに,点$\mathrm{Q}$における円$C_1$の接線の方程式を求めよ.
(2)原点$\mathrm{O}$と点$\mathrm{P}$および(1)の点$\mathrm{Q}$の$3$点を通る円を$C_2$とする.$C_2$の方程式を求めよ.
(3)$m=\sqrt{3}$のとき,円$C_1$と(2)の円$C_2$の両方に接する直線の方程式を求めよ.
高知大学 国立 高知大学 2013年 第1問
座標平面において,点$(0,\ 5)$を通り,直線$y=x$と点$(a,\ a)$で接する円$C$について,次の問いに答えよ.

(1)点$(0,\ 5)$と直線$y=x$と点$(a,\ a)$がかかれているとき,コンパスと目盛りのない定規を用いて,円$C$を作図する手順を説明せよ.
(2)円$C$の方程式を求めよ.
(3)円$C$の中心の座標を$(s,\ t)$とするとき,$\displaystyle x=\frac{\sqrt{2}}{2}(s+t)$,$\displaystyle y=\frac{\sqrt{2}}{2}(-s+t)$とおく.このとき,$a$の値が変化するときの点$(x,\ y)$の軌跡を座標平面に図示せよ.
高知大学 国立 高知大学 2013年 第1問
$3$次関数$f(x)=x^3-6x+3$について,次の問いに答えよ.

(1)$y=f(x)$の増減表を作り,$y$が極大,極小となるグラフ上の点をそれぞれ,$\mathrm{A}$,$\mathrm{B}$とするとき,それらの点の座標を求めよ.
(2)線分$\mathrm{AB}$の中点$\mathrm{C}$の座標を求め,$\mathrm{C}$が$y=f(x)$のグラフの上にあることを示せ.
(3)$y=f(x)$のグラフは,$(2)$で求めた点$\mathrm{C}$に関して点対称であることを示せ.
(4)$(2)$で求めた点$\mathrm{C}$を通り傾きが$2$の直線と$y=f(x)$のグラフで囲まれた部分の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。