タグ「直線」の検索結果

113ページ目:全2462問中1121問~1130問を表示)
愛知教育大学 国立 愛知教育大学 2013年 第4問
曲線$y=x^2$を$C$とする.$C$上の点$\mathrm{A}(\alpha,\ \alpha^2) \ (\alpha<0)$における曲線$C$の接線を$\ell$とする.また,この接線$\ell$上の点$\mathrm{P}$から,曲線$C$に$\ell$とは異なる接線$m$をひく.ただし,点$\mathrm{P}$の$x$座標は$p$とし,$p>\alpha$とする.このとき,以下の問いに答えよ.

(1)接線$m$の曲線$C$との接点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{A}$と点$\mathrm{B}$を通る直線が,直線$\ell$と垂直となるとき,点$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$を(2)で求めたものとする.このとき,点$\mathrm{P}$を通り,$\triangle \mathrm{ABP}$の面積を$2$等分する直線の方程式を求めよ.
山梨大学 国立 山梨大学 2013年 第1問
次の問いに答えよ.

(1)$|x-2|+|x+3|<6$を満たす実数$x$の値の範囲を求めよ.
(2)$a_1=1,\ a_2=2,\ a_{n+2}-2a_{n+1}+a_n=1$で定められる数列$\{a_n\}$の一般項$a_n$を求めよ.
(3)毎年$1$月の人口調査で,人口が前年の$98 \%$に減少していく都市がある.この都市の人口が,初めて今年の調査の$70 \%$以下になるのは何年後の調査のときか.ただし,$\log_{10}2=0.3010$,$\log_{10}7=0.8451$として,答えは整数で求めよ.
(4)直線$y=2x$と放物線$\displaystyle y=x^2+4x+\cos 2\theta+\frac{1}{2} \ (0 \leqq \theta \leqq 2\pi)$がある.放物線に直線が接するときの$\theta$の値を求めよ.
山梨大学 国立 山梨大学 2013年 第2問
関数$f(x)=x^3-3a^2x-2a^2$を考える.ただし,$a>1$とする.

(1)関数$f(x)$の極大値と極小値を求めよ.
(2)定数$k \ (k<0)$に対して,方程式$f(x)=k$が相異なる$2$つだけの実数解$x_1,\ x_2$をもつとする.このとき,$k,\ x_1,\ x_2$の値をそれぞれ求めよ.ただし,$x_1<x_2$とする.
(3)$x_1,\ x_2$を(2)で求めた値とするとき,$\mathrm{P}(x_1,\ f(x_1))$,$\mathrm{Q}(x_2,\ f(x_2))$,原点の$3$点を通る放物線を求めよ.
(4)$k$が(2)で求めた値をとるとき,(3)で求めた放物線と直線$y=k$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2013年 第3問
$s,\ t,\ u$を正の実数とする.点$\mathrm{O}$を内部に含む$\triangle \mathrm{ABC}$について,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とすると,$s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}=\overrightarrow{\mathrm{0}}$が成り立っている.直線$\mathrm{CO}$と線分$\mathrm{AB}$の交点を$\mathrm{D}$とし,$\triangle \mathrm{BCO}$の面積を$S_A$,$\triangle \mathrm{CAO}$の面積を$S_B$,$\triangle \mathrm{ABO}$の面積を$S_C$とする.

(1)面積の比$S_A:S_B$は,線分の長さの比$\mathrm{BD}:\mathrm{AD}$に等しいことを示せ.
(2)比$\mathrm{BD}:\mathrm{AD}$を$s,\ t,\ u$を用いて表せ.
(3)比$S_A:S_B:S_C$を$s,\ t,\ u$を用いて表せ.
山梨大学 国立 山梨大学 2013年 第2問
$xy$平面において,点$(-2,\ 0)$を中心とする半径$1$の円を$C_1$,点$(2,\ 0)$を中心とする半径$1$の円を$C_2$とする.直線$y=ax+b$を$\ell$とし,この直線$\ell$は,円$C_1$と円$C_2$の両方と共有点をもつものとする.

(1)$b=0$のとき,$a$のとりうる値の範囲を求めよ.また,$b=0$で$a$が求めた範囲を動くとき,直線$\ell$の通る領域を図示せよ.
(2)$a \geqq 0$のとき,$a,\ b$の満たす条件を求めよ.また,この条件を満たす点$(a,\ b)$の領域を$ab$平面上に図示せよ.
浜松医科大学 国立 浜松医科大学 2013年 第1問
関数$\displaystyle f(x)=\log x+\frac{1}{x}$と曲線$C:y=f(x) \ (x>0)$について,以下の問いに答えよ.なお,必要ならば$\displaystyle \lim_{x \to \infty}\frac{\log x}{x}=0$を用いてもよい.

(1)$f(x)$の導関数$f^\prime(x)$と不定積分$\displaystyle \int f(x) \, dx$をそれぞれ求めよ.
(2)曲線$C$の変曲点を求めよ.
以下$a$は$1$より大きい実数とし,点$(a,\ f(a))$における$C$の接線を$\ell(a)$とする.
(3)接線$\ell(a)$の方程式を求めよ.また,$a \neq 2$のとき,曲線$C$と接線$\ell(a)$は$2$個の共有点(接点と交点)をもつことを示せ.
(4)$a=2$とする.曲線$C$,接線$\ell(2)$と$2$直線$x=1,\ x=4$で囲まれた図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2013年 第2問
$|k|<1$または$k>1$を満たす実数$k$に対し,次の$2$次曲線$C(k)$を考える.
\[ C(k):\frac{x^2}{k+1}+\frac{y^2}{k-1}=1 \]
以下の問いに答えよ.

(1)点$(1,\ 1)$を通る曲線$C(k)$をすべて求めて,その概形をかけ.
(2)曲線$C(3)$が点$(a,\ b) \ (a>0,\ b>0)$を通るとき,$a$と$b$の間に成り立つ関係式を求めよ.またこのとき,点$(a,\ b)$を通る曲線$C(k) \ (k \neq 3)$の方程式を,$b$を用いて表し,その焦点を求めよ.
(3)(2)の$2$つの曲線$C(3)$,$C(k)$について,点$(a,\ b)$における$C(3)$,$C(k)$の接線をそれぞれ$\ell_1$,$\ell_2$とする.$\ell_1$と$\ell_2$のなす角度を求めよ.
弘前大学 国立 弘前大学 2013年 第3問
$2$曲線$C_1:x^2+y^2=1$と$\displaystyle C_2:y=-\frac{\sqrt{3}}{3}(x-3)(x-\beta)$を考える.ただし,$\beta>3$とする.また,$C_1$上の点$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$を通る$C_1$の接線$\ell$が$C_2$にも接しているとする.次の問いに答えよ.

(1)$\ell$と$C_2$の接点の座標および$\beta$の値を求めよ.
(2)$C_1$と$\ell$および$x$軸で囲まれた部分を$S_1$とし,$C_2$と$\ell$および$x$軸で囲まれた部分を$S_2$とする.このとき,$S_1$と$S_2$の面積をそれぞれ求めよ.
弘前大学 国立 弘前大学 2013年 第2問
曲線$\displaystyle y=e^x+\frac{6}{e^x+1}$と直線$y=4$で囲まれた部分の面積を求めよ.ただし,$e$は自然対数の底である.
弘前大学 国立 弘前大学 2013年 第4問
$x \geqq 2$とし,区間$-1 \leqq t \leqq 1$における$f(t)=4t^3-x^2t$の最大値を$M(x)$で表す.このとき,次の問いに答えよ.

(1)$y=M(x)$のグラフの概形をかけ.
(2)曲線$y=M(x)$と$y$軸および$2$直線$\displaystyle y=\frac{8 \sqrt{3}}{9},\ y=10$で囲まれた部分の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。