タグ「直線」の検索結果

112ページ目:全2462問中1111問~1120問を表示)
名古屋工業大学 国立 名古屋工業大学 2013年 第4問
三角形$\mathrm{OAB}$がある.点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$とする.辺$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$を通り辺$\mathrm{AB}$に垂直な直線と直線$\mathrm{OA}$との交点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=2$,$\overrightarrow{a} \cdot \overrightarrow{b}=p$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$p$を用いて表せ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$p$を用いて表せ.
(3)$p \geqq 0$であるとき$\displaystyle \frac{\mathrm{ON}}{\mathrm{OA}}$の値の範囲を求めよ.
(4)点$\mathrm{N}$が線分$\mathrm{OA}$を$1:3$に内分するとき,三角形$\mathrm{OAB}$の面積$S$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2013年 第2問
図に示したように第$1$象限内に原点を頂点の一つとして有する \\
一辺の長さが$a$である正三角形$\mathrm{OAB}$がある.この図形に関す \\
る以下の問いに答えよ.ただし,線分$\mathrm{OA}$と$x$軸とのなす角を \\
$15^\circ$とする.また,三角関数を使用する場合,三角関数は数値 \\
化すること.
\img{410_1079_2013_1}{32}

(1)三角形$\mathrm{OAB}$の面積を求めよ.
(2)三角形の二つの頂点$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(3)直線$\mathrm{OA}$,$\mathrm{OB}$および$\mathrm{AB}$の方程式を求めよ.
(4)この三角形$\mathrm{OAB}$の内部にあり,三角形に内側で接する円の方程式を求めよ.また,この円の面積を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2013年 第3問
曲線$\displaystyle y=\frac{1}{x} \ (x>0)$を曲線$C$とする.曲線$C$と直線$y=mx$の交点を点$\mathrm{P}$,曲線$C$と直線$\displaystyle y=\frac{1}{2}x$との交点を点$\mathrm{Q}$とする.ここで傾き$m$を$\displaystyle m>\frac{1}{2}$の実数とする.以下の問いに答えよ.

(1)点$\mathrm{P}$と点$\mathrm{Q}$の座標をそれぞれ求めよ.
(2)点$\mathrm{Q}$における曲線$C$の接線$L$の方程式を求めよ.
(3)接線$L$と直線$y=mx$の交点の座標を,$m$を用いて表せ.
(4)原点$\mathrm{O}$と点$\mathrm{P}$,原点$\mathrm{O}$と点$\mathrm{Q}$を結ぶ線分をそれぞれ$\mathrm{OP}$,$\mathrm{OQ}$とする.曲線$C$と$\mathrm{OP}$,$\mathrm{OQ}$で囲まれた部分の面積$A$を,$m$を用いて表せ.
(5)点$\mathrm{P}$および点$\mathrm{Q}$から$y$軸に垂直に引いたそれぞれの線分と,$y$軸および曲線$C$で囲まれた領域を$y$軸のまわりに$1$回転してできる体積を,$m$を用いて表せ.
富山大学 国立 富山大学 2013年 第1問
関数$f(x)=x+2 \sin x$を考える.このとき,次の問いに答えよ.

(1)$y=f(x) \ (0 \leqq x \leqq 2\pi)$の増減を調べ,そのグラフをかけ.
(2)$0<x<2\pi$において関数$f(x)$が極値をとるときの$x$の値を$\alpha,\ \beta \ (0<\alpha<\beta<2\pi)$とする.曲線$y=f(x)$の$\alpha \leqq x \leqq \beta$の部分と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
富山大学 国立 富山大学 2013年 第1問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$を満たす実数$t$に対して,$xy$平面上に$2$点$\mathrm{A}(1+2t,\ (1+t)\cos t+\sin t)$,$\mathrm{B}(-1,\ -(1+t)\cos t+\sin t)$を考える.$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_t$とする.このとき,次の問いに答えよ.

(1)直線$\ell_t$の方程式を求めよ.
(2)$k$を定数とし,直線$\ell_t$と直線$x=k$との交点を$\mathrm{P}$とする.$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}$の$y$座標のとりうる値の範囲を$k$を用いて表せ.
(3)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,直線$\ell_t$の通りうる領域を図示せよ.
富山大学 国立 富山大学 2013年 第3問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$を満たす実数$t$に対して,$xy$平面上に$2$点$\mathrm{A}(1+2t,\ (1+t)\cos t+\sin t)$,$\mathrm{B}(-1,\ -(1+t)\cos t+\sin t)$を考える.$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_t$とする.このとき,次の問いに答えよ.

(1)直線$\ell_t$の方程式を求めよ.
(2)$k$を定数とし,直線$\ell_t$と直線$x=k$との交点を$\mathrm{P}$とする.$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}$の$y$座標のとりうる値の範囲を$k$を用いて表せ.
(3)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,直線$\ell_t$の通りうる領域を図示せよ.
富山大学 国立 富山大学 2013年 第3問
直線$y=ax (a>0)$と$x$軸,および直線$x=1$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を$V$とし,曲線$y=x+\sin x (0 \leqq x \leqq 2\pi)$と$x$軸,および直線$x=2\pi$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を$W$とする.このとき,次の問いに答えよ.

(1)$V$を$a$を用いて表せ.
(2)$0<x \leqq 2\pi$において,$x+\sin x>0$であることを示せ.
(3)$W$の値を求めよ.
(4)$V=W$のとき,$a$の値を求めよ.
富山大学 国立 富山大学 2013年 第1問
関数$f(x)=x+2 \sin x$を考える.このとき,次の問いに答えよ.

(1)$y=f(x) \ (0 \leqq x \leqq 2\pi)$の増減を調べ,そのグラフをかけ.
(2)$0<x<2\pi$において関数$f(x)$が極値をとるときの$x$の値を$\alpha,\ \beta \ (0<\alpha<\beta<2\pi)$とする.曲線$y=f(x)$の$\alpha \leqq x \leqq \beta$の部分と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第5問
同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{OB}$を$3:2$に内分する点を$\mathrm{C}$,線分$\mathrm{AB}$を$s:(1-s) \ (0<s<1)$に内分する点を$\mathrm{D}$とし,線分$\mathrm{OD}$と線分$\mathrm{AC}$の交点を$\mathrm{E}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくとき,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$s$を用いて表せ.
(2)$\triangle \mathrm{OAE}$と$\triangle \mathrm{OCE}$の面積が等しくなるような$s$の値を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第6問
座標平面上の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ 0)$に対し,点$\mathrm{A}$を通る傾き$m \ (m>0)$の直線と円$C$との交点で,点$\mathrm{A}$とは異なる点を$\mathrm{P}$とする.また,点$\mathrm{P}$から$x$軸に下した垂線を$\mathrm{PQ}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$m$を用いて表せ.
(2)$\triangle \mathrm{APQ}$の面積を最大とする$m$の値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。