タグ「直線」の検索結果

111ページ目:全2462問中1101問~1110問を表示)
千葉大学 国立 千葉大学 2013年 第7問
$a$は$0$でない実数とする.直線$y=ax$と曲線$y=x \log (x+1)$で囲まれる図形の面積を求めよ.
東京大学 国立 東京大学 2013年 第1問
関数$y=x(x-1)(x-3)$のグラフを$C$,原点$\mathrm{O}$を通る傾き$t$の直線を$\ell$とし,$C$と$\ell$が$\mathrm{O}$以外に共有点をもつとする.$C$と$\ell$の共有点を$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$とし,$|\overrightarrow{\mathrm{OP}}|$と$|\overrightarrow{\mathrm{OQ}}|$の積を$g(t)$とおく.ただし,それらの共有点の$1$つが接点である場合は,$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$のうちの$2$つが一致して,その接点であるとする.関数$g(t)$の増減を調べ,その極値を求めよ.
九州大学 国立 九州大学 2013年 第1問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,$\mathrm{OP}=\mathrm{AP}=\mathrm{BP}=\mathrm{CP}$をみたす点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.辺$\mathrm{AP}$を$1:3$に内分する点を$\mathrm{D}$,辺$\mathrm{CP}$の中点を$\mathrm{E}$,辺$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.このとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{OE}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{PQ}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$と$t$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の値を求めよ.
(4)直線$\mathrm{PQ}$が平面$\mathrm{ODE}$に垂直であるとき,$t$の値および線分$\mathrm{OP}$の長さを求めよ.
九州大学 国立 九州大学 2013年 第4問
座標平面上の円$(x-1)^2+(y-1)^2=2$を$C$とする.以下の問いに答えよ.

(1)直線$y=x-2$は円$C$に接することを示せ.また,接点の座標も求めよ.
(2)円$C$と放物線$\displaystyle y=\frac{1}{4}x^2-1$の共有点の座標をすべて求めよ.
(3)不等式$\displaystyle y \geqq \frac{1}{4}x^2-1$の表す領域を$D$とする.また,不等式$|x|+|y| \leqq 2$の表す領域を$A$とし,不等式$(|x|-1)^2+(y-1)^2 \leqq 2$の表す領域を$B$とする.そして,和集合$A \cup B$,すなわち領域$A$と領域$B$を合わせた領域を$E$とする.このとき,領域$D$と領域$E$の共通部分$D \cap E$を図示し,さらに,その面積を求めよ.
千葉大学 国立 千葉大学 2013年 第5問
$a,\ b$を実数とし,$a>0$とする.放物線$\displaystyle y=\frac{x^2}{4}$上に$2$点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{4} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{b^2}{4} \right)$をとる.点$\mathrm{A}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{A}$と$n_\mathrm{A}$,点$\mathrm{B}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{B}$と$n_\mathrm{B}$とおいたとき,$\ell_\mathrm{A}$と$\ell_\mathrm{B}$が直交しているものとする.$2$つの接線$\ell_\mathrm{A},\ \ell_\mathrm{B}$の交点を$\mathrm{P}$とし,$2$つの法線$n_\mathrm{A},\ n_\mathrm{B}$の交点を$\mathrm{Q}$とする.

(1)$b$を$a$を用いて表せ.
(2)$\mathrm{P},\ \mathrm{Q}$の座標を$a$を用いて表せ.
(3)長方形$\mathrm{AQBP}$の面積が最小となるような$a$の値と,そのときの面積を求めよ.
千葉大学 国立 千葉大学 2013年 第8問
$r$を$1$より大きい実数とする.半径$1$の円$C$の周上に点$\mathrm{Q}$をとる.最初に円$C$の中心$\mathrm{P}$は座標平面の$(0,\ 1)$,点$\mathrm{Q}$は$(0,\ 2)$にあるものとし,円$C$が$x$軸に接しながら$x$軸の正の方向にすべることなく転がっていく.角$\theta$ラジアンだけ回転したとき,半直線$\mathrm{PQ}$上に$\mathrm{PR}=r$となる点$\mathrm{R}$をとる.$\theta$を$0$から$2\pi$まで動かしたときの$\mathrm{R}$の軌跡を考える.

(1)$\alpha,\ \beta$は$0 \leqq \alpha<\beta \leqq 2\pi$をみたし,$\theta=\alpha$のときの$\mathrm{R}$の座標と$\theta=\beta$のときの$\mathrm{R}$の座標とが一致するものとする.$\displaystyle t=\frac{\beta-\alpha}{2}$とおくとき,$r$を$t$を用いて表せ.
(2)(1)において,$\theta$を$\alpha$から$\beta$まで動かしたときの$\mathrm{R}$の軌跡によって囲まれた図形の面積を$S$とする.$S$を$t$を用いて表せ.
(3)$\displaystyle \lim_{r \to \infty} \frac{S}{r^2}$を求めよ.
東京大学 国立 東京大学 2013年 第2問
座標平面上の$3$点
\[ \mathrm{P}(0,\ -\sqrt{2}),\quad \mathrm{Q}(0,\ \sqrt{2}),\quad \mathrm{A}(a,\ \sqrt{a^2+1}) \quad (0 \leqq a \leqq 1) \]
を考える.

(1)$2$つの線分の長さの差$\mathrm{PA}-\mathrm{AQ}$は$a$によらない定数であることを示し,その値を求めよ.
(2)$\mathrm{Q}$を端点とし$\mathrm{A}$を通る半直線と放物線$\displaystyle y=\frac{\sqrt{2}}{8}x^2$との交点を$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=2$へ下した垂線と直線$y=2$との交点を$\mathrm{C}$とする.このとき,線分の長さの和
\[ \mathrm{PA}+\mathrm{AB}+\mathrm{BC} \]
は$a$によらない定数であることを示し,その値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2013年 第1問
関数$\displaystyle f(x)=\log (x+1)-\frac{1}{2}\log (x^2+1) \ (x>-1)$について,次の問いに答えよ.

(1)$f(x)$の増減を調べて極値を求めよ.
(2)$k$を実数とする.$x$についての方程式$f(x)=k$の相異なる実数解の個数を調べよ.
(3)曲線$y=f(x)$,$x$軸および直線$x=1$で囲まれる図形の面積$S$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2013年 第2問
$k$を正の定数とする.$2$つの曲線
\[ C_1:y=\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=k \tan x \ \left( 0 \leqq x<\frac{\pi}{2} \right) \]
について,次の問いに答えよ.

(1)$C_1$と$C_2$の交点におけるそれぞれの曲線の接線を$\ell_1,\ \ell_2$とする.直線$\ell_1,\ \ell_2$がなす角を$\displaystyle \theta \ \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とするとき,$\theta$の値を求めよ.
(2)$\displaystyle k=\frac{3}{2}$のとき,曲線$C_1,\ C_2$と$y$軸で囲まれる図形を$x$軸のまわりに回転させてできる立体の体積$V$を求めよ.
静岡大学 国立 静岡大学 2013年 第3問
関数$\displaystyle f(x)=\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$に対して,曲線$y=f(x)$を$C$とする.このとき,次の問いに答えよ.

(1)極限値$\displaystyle \lim_{x \to \infty}f(x)$と$\displaystyle \lim_{x \to -\infty}f(x)$,および,$f^{\prime\prime}(x)=0$を満たす$x$の値を求めよ.
(2)曲線$C$の概形をかけ.
(3)曲線$C$について,傾きが$2$の接線$\ell$の方程式を求めよ.
(4)曲線$C$,(3)で求めた接線$\ell$,直線$x=\log \sqrt{2}$によって囲まれた図形$D$の面積を求めよ.
(5)(4)の図形$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。