タグ「直線」の検索結果

106ページ目:全2462問中1051問~1060問を表示)
秋田県立大学 公立 秋田県立大学 2014年 第3問
関数$\displaystyle f(x)=\frac{2x}{x^2+4}$について,以下の設問に答えよ.

(1)不等式$\displaystyle f(x)>-\frac{1}{2}$を解け.
(2)関数$f(x)$の導関数を求めよ.
(3)関数$f(x)$の最大値および最小値を求めよ.また,そのときの$x$の値を求めよ.
(4)$a>0$とする.$x \geqq 0$において,曲線$y=f(x)$,$x$軸,および直線$x=a$で囲まれた部分の面積を$S(a)$とする.$S(a) \geqq 2$となる$a$の値の範囲を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
$xy$平面上に動点$\mathrm{P}(t,\ 2t)$,$\mathrm{Q}(t-1,\ 1-t)$がある.ただし,$0 \leqq t \leqq 1$とする.次の問いに答えよ.

(1)実数$k$に対して直線$x=k$と直線$\mathrm{PQ}$との交点を求めよ.
(2)閉区間$[-1,\ 1]$内の定数$a$に対し,直線$x=a$と線分$\mathrm{PQ}$との交点の$y$座標のとり得る範囲を$a$で表せ.
(3)$t$が$0$から$1$まで動くとき,線分$\mathrm{PQ}$が動く領域$S$の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
次の問いに答えよ.

(1)四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$1:1$に内分する点を$\mathrm{D}$,線分$\mathrm{BD}$を$3:2$に内分する点を$\mathrm{E}$,線分$\mathrm{CE}$を$3:1$に内分する点を$\mathrm{F}$,直線$\mathrm{OF}$と平面$\mathrm{ABC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$で表せ.
(2)$\sqrt{x^2+84}$が整数となるような正の整数$x$をすべて求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$xy$平面において,曲線$y=nx^2$($n$は自然数,$x \geqq 0$)を$C_n$とし,直線$y=1$を$L$とする.$2$つの曲線$C_n$,$C_{n+1}$および$L$で囲まれた図形の面積を$S_n$とする.次の問いに答えよ.

(1)$S_n$を求めよ.
(2)任意の$n$に対して$S_n>S_{n+1}$が成り立つことを示せ.
(3)$\displaystyle \sum_{k=1}^n S_k>\frac{1}{2}$となる最小の$n$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
$xy$平面上に動点$\mathrm{P}(t,\ 2t)$,$\mathrm{Q}(t-1,\ 1-t)$がある.ただし,$0 \leqq t \leqq 1$とする.次の問いに答えよ.

(1)実数$k$に対して直線$x=k$と直線$\mathrm{PQ}$との交点を求めよ.
(2)閉区間$[-1,\ 1]$内の定数$a$に対し,直線$x=a$と線分$\mathrm{PQ}$との交点の$y$座標のとり得る範囲を$a$で表せ.
(3)$t$が$0$から$1$まで動くとき,線分$\mathrm{PQ}$が動く領域$S$の面積を求めよ.
(4)$S$を$x$軸の周りに$1$回転させた回転体の体積を求めよ.
京都府立大学 公立 京都府立大学 2014年 第3問
区間$-1 \leqq x \leqq 1$で定義された連続関数$f(x)$を
\[ 12xf(x)+12 \int_0^x f(t) \, dt=15x^3 |x|-16x^3,\quad f(0)=0 \]
によって定める.曲線$C:y=f(x)$を考える.以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$は$x=0$で微分可能であることを示せ.
(3)曲線$C$と直線$\ell:y=a$との区間$-1 \leqq x \leqq 1$における共有点の個数を,$a$の値によって分類せよ.
(4)曲線$C$と$3$直線$y=-1$,$x=-1$,$x=1$で囲まれる部分を,$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
京都府立大学 公立 京都府立大学 2014年 第2問
定数$a$を正の実数とする.$2$つの放物線$C_1:y=2x^2+1$,$C_2:y=-\sqrt{2}(x+a)^2+1$がある.$C_1$,$C_2$の両方に接する直線を$C_1$,$C_2$の共通接線という.以下の問いに答えよ.

(1)$C_1$上の任意の点$\mathrm{P}$の$x$座標を$t$とする.点$\mathrm{P}$における$C_1$の接線の方程式を$t$を用いて表せ.
(2)$C_1$,$C_2$の共通接線がちょうど$2$本存在することを示せ.
(3)$C_1$,$C_2$の$2$本の共通接線と$C_1$とで囲まれた部分の面積を$a$を用いて表せ.
北九州市立大学 公立 北九州市立大学 2014年 第1問
以下の問いの空欄$[ア]$~$[ス]$に適する数値,式などを記せ.

(1)直線$\displaystyle y=\frac{x}{\sqrt{3}}+1$と$x$軸の正の向きとのなす角は$[ア]$であり,この直線と放物線$\displaystyle y=\frac{x^2}{4}$の共有点の座標は$([イ],\ [ウ])$と$([エ],\ [オ])$である.
(2)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{\sin A}{9}=\frac{\sin B}{7}=\frac{\sin C}{5}$が成り立つとき,この三角形の最も大きい角の余弦の値は$[カ]$である.この三角形の最も大きい辺の長さを$9$とすると,三角形の面積は$[キ]$である.
(3)同じ$2$つの箱と,同じ$4$つの球がある.$2$つの箱にすべての球を分配するときの組み合わせは$[ク]$通りである.また,大小の$2$つの箱と,$1$から$4$までの数が書かれた$4$つの球があるとき,すべての球を分配するときの組み合わせは$[ケ]$通りである.ただし,片方の箱のみに球が入っている場合も含む.
(4)$\displaystyle x=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}},\ y=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}$のとき,$x^2+y^2$の値は$[コ]$,$x^3-y^3$の値は$[サ]$となる.
(5)大小の$2$個のさいころを投げ,出た目が同じ場合は$10$点,大のさいころの目のほうが大きい場合は$5$点,それ以外の場合には得点は得られないとするとき,点数を得られる目が出る確率は$[シ]$で,得点の期待値は$[ス]$点である.
北九州市立大学 公立 北九州市立大学 2014年 第2問
以下の問いの空欄$[タ]$~$[ノ]$に適する数値,式を記せ.

(1)$i$を虚数単位として,等式$(2+i)(x-3yi)=1-i$を満たす実数$x$および$y$の値を求めると$x=[タ]$,$y=[チ]$となる.
(2)平面上に$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(3,\ -1)$と直線$x-2y-2=0$がある.この直線上に点$\mathrm{P}$をとるとき,$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$([ツ],\ [テ])$となる.
(3)$0 \leqq \theta<2\pi$の条件で,関数$y=\cos 2\theta-4 \sin \theta$の最大値と最小値を求めると,$\theta=[ト]$のときに最大値$[ナ]$をとり,$\theta=[ニ]$のときに最小値$[ヌ]$をとる.
(4)不等式$9^x \leqq 6+3^x$の解は$[ネ]$である.
(5)$3$つの数$x-3,\ x+1,\ x+6$がこの順で等比数列となるとき,$x$の値を求めると$x=[ノ]$となる.
北九州市立大学 公立 北九州市立大学 2014年 第2問
$2$つの曲線$C_1:f(x)=x^3-x$と$C_2:g(x)=x^3+x^2+ax$について考える.ただし,$a$は定数である.曲線$C_1$上の点$\displaystyle \mathrm{A}(\frac{1}{2},\ -\frac{3}{8})$における接線を$\ell$とし,点$\mathrm{A}$と異なる点$\mathrm{B}(p,\ q)$において曲線$C_1$と直線$\ell$は交わっている.以下の問題に答えよ.

(1)曲線$C_1$を原点に関して対称移動したグラフは$C_1$自身であることを証明せよ.
(2)直線$\ell$の方程式と$p,\ q$の値を求めよ.
(3)関数$f(x)$の$\displaystyle p \leqq x \leqq \frac{1}{2}$における最大値と最小値を求めよ.
(4)関数$g(x)$が極値を持たないための必要十分条件を導関数$g^\prime(x)$を用いて表せ.また,このときの定数$a$の値の範囲を求めよ.
(5)$a=1$のとき,$2$つの曲線$C_1$と$C_2$で囲まれた図形の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。