タグ「直交」の検索結果

9ページ目:全180問中81問~90問を表示)
札幌医科大学 公立 札幌医科大学 2014年 第3問
$a$を$0<a<1$とする.座標空間の$4$点を$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{a},\ 0 \right)$,$\displaystyle \mathrm{C} \left( 0,\ 0,\ \frac{1}{1-a} \right)$とする.また,$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を頂点とする四面体に内接する球を$S$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に直交し長さが$1$のベクトルを$a$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と球$S$の接点の座標を$a$を用いて表せ.
(3)球$S$の半径を$a$を用いて表せ.
(4)球$S$の体積の最大値を求めよ.
福岡女子大学 公立 福岡女子大学 2014年 第4問
鋭角三角形$\mathrm{ABC}$の外心を$\mathrm{R}$,$\mathrm{BC}$の中点を$\mathrm{M}$とする.点$\mathrm{H}$は,$\overrightarrow{\mathrm{AH}}=2 \overrightarrow{\mathrm{RM}}$を満たす点である.下図を参考にして以下の問に答えなさい.

(1)$\overrightarrow{\mathrm{BH}}=\overrightarrow{\mathrm{RA}}+\overrightarrow{\mathrm{RC}}$となることを示しなさい.
(2)$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{BH}}$が直交することを示しなさい.
(図は省略)
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
金沢大学 国立 金沢大学 2013年 第3問
$a>0$とする.$x \geqq 0$における関数$f(x)=e^{\sqrt{ax}}$と曲線$C:y=f(x)$について,次の問いに答えよ.

(1)$C$上の点$\displaystyle \mathrm{P} \left( \frac{1}{a},\ f \left( \frac{1}{a} \right) \right)$における接線$\ell$の方程式を求めよ.また,$\mathrm{P}$を通り$\ell$に直交する直線$m$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{1}{a}}f(x) \, dx$を$t=\sqrt{ax}$とおくことにより求めよ.
(3)曲線$C$,直線$y=1$および直線$m$で囲まれた図形の面積$S(a)$を求めよ.また,$a>0$における$S(a)$の最小値とそれを与える$a$の値を求めよ.
千葉大学 国立 千葉大学 2013年 第5問
$a,\ b$を実数とし,$a>0$とする.放物線$\displaystyle y=\frac{x^2}{4}$上に$2$点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{4} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{b^2}{4} \right)$をとる.点$\mathrm{A}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{A}$と$n_\mathrm{A}$,点$\mathrm{B}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{B}$と$n_\mathrm{B}$とおいたとき,$\ell_\mathrm{A}$と$\ell_\mathrm{B}$が直交しているものとする.$2$つの接線$\ell_\mathrm{A},\ \ell_\mathrm{B}$の交点を$\mathrm{P}$とし,$2$つの法線$n_\mathrm{A},\ n_\mathrm{B}$の交点を$\mathrm{Q}$とする.

(1)$b$を$a$を用いて表せ.
(2)$\mathrm{P},\ \mathrm{Q}$の座標を$a$を用いて表せ.
(3)長方形$\mathrm{AQBP}$の面積が最小となるような$a$の値と,そのときの面積を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$x>0$のとき,$\displaystyle e^{2x}>\frac{x^2}{2}$となることを示せ.
(2)$A=\left( \begin{array}{cc}
0 & p \\
1 & 0
\end{array} \right)$($p$は実数)について,$A^4=E$かつ$A^2 \neq E$のとき,$p$の値を求めよ.ただし,$E$は単位行列とする.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
(4)$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 2 \sqrt{3})$,$\mathrm{B}(1,\ 0)$をとる.点$\mathrm{A}$を通り,直線$\mathrm{OA}$に直交する直線上に$\mathrm{OA}=\mathrm{AC}$となる点$\mathrm{C}$をとる.$\angle \mathrm{COB}=\theta$とするとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
岩手大学 国立 岩手大学 2013年 第6問
$2$つの円$x^2+y^2=1$と$\displaystyle (x-a)^2+y^2=\frac{a^2}{4} \ (a>0)$が相異なる$2$点で交わるとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)第$1$象限の交点における$2$つの円の接線が直交するとき,$a$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第2問
$f(x)=x^3-x+5$として,曲線$y=f(x)$を$C$とする.点$\mathrm{P}(a,\ f(a))$における$C$の接線を$\ell$,法線を$n$とする.以下の各問に答えよ.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通り,かつ点$\mathrm{P}$における$C$の接線に直交する直線のことである.

(1)$\ell,\ n$の方程式をそれぞれ求めよ.
(2)$\ell$と$C$の共有点で,$\mathrm{P}$以外のものの個数を求めよ.
(3)$\displaystyle |a|<\frac{1}{\sqrt{3}}$のときには,$n$と$C$との共有点が$\mathrm{P}$以外にも存在することを示せ.
宇都宮大学 国立 宇都宮大学 2013年 第6問
座標平面上で原点$\mathrm{O}$を中心とする半径$1$の円の第$1$象限の部分を$C$とする.曲線$y=f(x) \ (0<x<1)$は第$4$象限にあり,かつすべての$x_1 \ (0<x_1<1)$について,点$(x_1,\ f(x_1))$における接線が$C$上の点$(x_1,\ y_1)$における$C$の接線と直交しているとする.曲線$y=f(x)$上の動点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)点$\mathrm{P}$における$y=f(x)$の接線と$y$軸との交点を$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さは常に$1$であることを示せ.
(3)$x$軸上と$y$軸上に$2$辺をもち,線分$\mathrm{OP}$を対角線とする長方形の面積を$S$とする.点$\mathrm{P}$が$S$を最大にする位置にあるとき,$\mathrm{P}$は$\mathrm{P}$における曲線の接線と座標軸が交わってできる$2$点の中点であることを示せ.
(4)$f(x)$を求めよ.ただし,$\displaystyle \lim_{x \to 1-0}f(x)=0$であるとする.
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
スポンサーリンク

「直交」とは・・・

 まだこのタグの説明は執筆されていません。