タグ「直交」の検索結果

8ページ目:全180問中71問~80問を表示)
千葉工業大学 私立 千葉工業大学 2014年 第4問
$xy$平面上に放物線$\displaystyle C:y=\frac{1}{4}x^2+4$と点$\mathrm{P}(p,\ 0)$がある.ただし,$p \geqq 0$とする.$C$上の点$\displaystyle \left( p,\ \frac{1}{4}p^2+4 \right)$における$C$の接線を$\ell$とし,$\ell$に関して,$\mathrm{P}$と対称な点を$\mathrm{Q}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$p=0$のとき,$\mathrm{Q}(0,\ [ア])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{p}{[イ]}x-\frac{[ウ]}{[エ]}p^2+[オ]$である.線分$\mathrm{PQ}$の中点が$\ell$上にあることから
\[ Y=\frac{p}{[カ]}X+[キ] \cdots\cdots (*) \]
が成り立つ.
(3)$p>0$のとき,$\mathrm{Q}$が,$\mathrm{P}$を通り$\ell$と直交する直線上にあることから
\[ Y=\frac{[クケ]}{p}X+[コ] \cdots\cdots (**) \]
が成り立つ.$(*)$と$(**)$から$p$を消去することにより
\[ X^2+Y^2-[サシ]Y+[スセ]=0 \]
が成り立つことがわかる.
(4)$X$の最小値は$[ソタ]$であり,このとき$p=[チ]$である.$p$が$0$から$[チ]$まで変化するとき,線分$\mathrm{PQ}$が通過する部分の面積は$\displaystyle \frac{[ツ]}{[テ]} \pi+\frac{[トナ]}{[ニ]}$である.
金沢工業大学 私立 金沢工業大学 2014年 第5問
原点を$\mathrm{O}$とする座標平面において,次の極方程式で表される$2$つの曲線を考える.
\[ r=f(\theta)=3 \cos \theta,\quad r=g(\theta)=1+\cos \theta \]
ただし,$0 \leqq \theta<2\pi$とする.また,極座標が$(f(\theta),\ \theta)$,$(g(\theta),\ \theta)$である点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)点$\mathrm{P}$は,中心が直交座標で$\displaystyle \left( \frac{[ア]}{[イ]},\ [ウ] \right)$であり,半径が$\displaystyle \frac{[エ]}{[オ]}$である円の周上を動く.
(2)点$\mathrm{P}(f(\theta),\ \theta)$と点$\mathrm{Q}(g(\theta),\ \theta)$の間の距離は$\displaystyle \theta=\frac{\pi}{[カ]}$および$\displaystyle \frac{[キ]}{[ク]}\pi$のとき最小値$[ケ]$をとり,$\theta=[コ]$のとき最大値$[サ]$をとる.
(3)線分$\mathrm{PQ}$の中点が原点$\mathrm{O}$となるとき,点$\mathrm{P}$の直交座標は$\displaystyle \left( \frac{[シ]}{[スセ]},\ \pm \frac{[ソ] \sqrt{[タチ]}}{[ツテ]} \right)$である.
早稲田大学 私立 早稲田大学 2014年 第2問
$4$つの角がすべて$\pi$未満である平面上の四角形$\mathrm{ABCD}$において$\mathrm{AB}=5$,$\mathrm{CD}=10$とする.また,対角線$\mathrm{AC}$と$\mathrm{BD}$は互いに直交し,$\mathrm{AC}=12$,$\mathrm{BD}=9$とする.$\angle \mathrm{BAC}=x$,$\angle \mathrm{BDC}=y$,$\angle \mathrm{CBD}=\alpha$とするとき,次の問に答えよ.

(1)$\sin x$および$\sin y$の値を求めよ.
(2)$\sin \alpha$および$\cos \alpha$の値を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{BA}}$と$\overrightarrow{\mathrm{BC}}$の内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$の値を求めよ.
久留米大学 私立 久留米大学 2014年 第6問
点$(p,\ 0)$を通り,楕円$4x^2+y^2=4$に接する直線の方程式は$y=[$15$]$および$y=[$16$]$で,接点の$x$座標は$x=[$17$]$である.また,$p=[$18$]$のとき,$2$つの接線は直交する.ここで,$p$は実数で$p>2$とする.
同志社大学 私立 同志社大学 2014年 第3問
平面上で鋭角三角形$\triangle \mathrm{ABC}$の外側に,$\mathrm{AB}$および$\mathrm{AC}$を$1$辺とする正方形$\mathrm{ABFG}$,$\mathrm{ACDE}$をつくる.ただし,$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{AG}}|$,$|\overrightarrow{\mathrm{AC}}|=|\overrightarrow{\mathrm{AE}}|$とする.線分$\mathrm{EG}$の中点を$\mathrm{M}$,点$\mathrm{C}$から$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$,直線$\mathrm{AM}$と$\mathrm{CH}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$とおき,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=t$,$\angle \mathrm{CAB}=\theta$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を$t,\ \theta$を用いて表せ.
(2)$\overrightarrow{\mathrm{HC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ t,\ \theta$を用いて表せ.
(3)直線$\mathrm{AM}$と直線$\mathrm{BC}$が直交することを示せ.
(4)$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AE}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ t,\ \theta$を用いて表せ.
(5)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ t,\ \theta$を用いて表せ.
(6)$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{AC}}$を求めよ.
昭和薬科大学 私立 昭和薬科大学 2014年 第3問
点$\mathrm{A}(2,\ 1,\ -1)$を通り,ベクトル$\overrightarrow{u}=(2,\ 1,\ 1)$に平行な直線$\ell$上の点を$\mathrm{P}$とし,点$\mathrm{B}(-4,\ -2,\ 2)$を通り,ベクトル$\overrightarrow{v}=(-1,\ 1,\ 1)$に平行な直線$m$上の点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の座標を媒介変数$s$を用いて,また,点$\mathrm{Q}$の座標を媒介変数$t$を用いて表せ.ただし,$s=1$のとき$\mathrm{P}(4,\ 2,\ 0)$,$t=1$のとき$\mathrm{Q}(-5,\ -1,\ 3)$とする.
(2)$\overrightarrow{\mathrm{PQ}}$が$2$直線$\ell$と$m$に直交するときの$s$と$t$の値を求めよ.
(3)$2$直線$\ell$と$m$との間の距離を求めよ.
立教大学 私立 立教大学 2014年 第3問
$a>0$とする.座標平面上に$2$つの放物線$C_1:y=x^2-2x+2$と$\displaystyle C_2:y=-\frac{1}{2}x^2+ax-\frac{3}{2}$がある.放物線$C_1$上の点$\mathrm{P}(2,\ 2)$を通り,点$\mathrm{P}$での接線に直交する直線を$\ell$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$が共有点をもたないとき,$a$の値の範囲を求めよ.
(3)直線$\ell$が放物線$C_2$に接しているとき,$a$の値と接点の座標を求めよ.
(4)$a$を$(3)$で求めた値としたとき,直線$\ell$と放物線$C_1,\ C_2$および$y$軸で囲まれる部分の面積を$S$とする.$S$の値を求めよ.
立教大学 私立 立教大学 2014年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$(\log_3 x)(\log_3 9x)-6 \log_9 x-6=0$を満たす$x$の値をすべて求めると,$[ア]$である.
(2)座標平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(3,\ 7)$,$\mathrm{C}(-1,\ 5)$がある.このとき,点$\mathrm{C}$を通り直線$\mathrm{AB}$と直交する直線の方程式は$y=[イ]$である.
(3)実数$x$が方程式$(1+i)x^2-(5+i)x+6-2i=0$を満たすとき,$x=[ウ]$である.ただし,$i$は虚数単位とする.
(4)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\tan \theta=\sqrt{7}$のとき,$\sin \theta=[エ]$である.
(5)$3$つのさいころを同時に投げたとき,出た目の最小値が$5$となる確率は$[オ]$である.
(6)整式$P(x)=x^3+ax^2+bx+c$は$x^2-3x+2$で割ったときの余りが$-2x+7$であり,関数$y=P(x)$は$x=1$で極値をとる.このとき,$a=[カ]$,$b=[キ]$,$c=[ク]$である.
(7)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{5}$のとき,$\overrightarrow{a} \cdot \overrightarrow{b}=[ケ]$である.
(8)直線$y=2x+k$が円$x^2-2x+y^2=0$と共有点をもつとき,$[コ] \leqq k \leqq [サ]$である.
東京医科大学 私立 東京医科大学 2014年 第1問
次の$[ ]$を埋めよ.

(1)座標平面上の点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{4} \right)$を通る$2$曲線$\displaystyle C_1:y=\frac{1}{4}x^2$,$C_2:ax^2+by^2=1$($a,\ b$は正の定数)を考える.点$\mathrm{A}$における$2$曲線$C_1,\ C_2$の接線が直交するとき
\[ a=\frac{[ア]}{[イ]},\quad b=\frac{[ウエ]}{[オ]} \]
である.
(2)座標平面の点$\mathrm{P}(x,\ y)$が円$\displaystyle C:(x-1)^2+(y-1)^2=\frac{1}{16}$上を動くとき,式
\[ \frac{x}{y}+\frac{y}{x} \]
がとる最大値を$M$とすれば
\[ M=\frac{[カキ]}{[クケ]} \]
である.
大阪府立大学 公立 大阪府立大学 2014年 第2問
$\mathrm{OA}=\mathrm{OB}=1$をみたす二等辺三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{Q}$,直線$\mathrm{OP}$と直線$\mathrm{AQ}$の交点を$\mathrm{R}$,直線$\mathrm{BR}$と辺$\mathrm{OA}$の交点を$\mathrm{S}$とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.このとき,直線$\mathrm{BS}$は辺$\mathrm{OA}$と直交しているとする.

(1)ベクトル$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{BS}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(3)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(4)三角形$\mathrm{OAB}$の面積を求めよ.
スポンサーリンク

「直交」とは・・・

 まだこのタグの説明は執筆されていません。