タグ「直交」の検索結果

5ページ目:全180問中41問~50問を表示)
福岡大学 私立 福岡大学 2015年 第3問
関数$\displaystyle f(x)=\frac{2 \sqrt{x}}{1+\sqrt{x}}$について,次の問いに答えよ.

(1)曲線$y=f(x)$上の点$(1,\ 1)$における接線の方程式を求めよ.
(2)点$(1,\ 1)$において接線と直交する直線を$\ell$とする.曲線$y=f(x)$,直線$\ell$および$x$軸で囲まれる図形の面積を求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第3問
座標平面において,極方程式$r=2 \cos \theta$で表される曲線を$C$とし,$C$上において極座標が$\displaystyle \left(\sqrt{2},\ \frac{\pi}{4} \right)$,$(2,\ 0)$である点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.また,$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$とし,$\mathrm{A}$を中心とし,線分$\mathrm{AB}$を半径にもつ円を$D$とする.

(1)曲線$C$は直交座標において点$([ア],\ [イ])$を中心とし,半径が$[ウ]$の円を表す.
(2)直線$\ell$の極方程式は$\displaystyle r \cos \left( \theta-\displaystyle\frac{\pi}{[エ]} \right)=\sqrt{[オ]}$である.
(3)円$D$の極方程式は$\displaystyle r=[カ] \sqrt{[キ]} \cos \left( \theta-\frac{\pi}{[ク]} \right)$である.
金沢工業大学 私立 金沢工業大学 2015年 第6問
\begin{mawarikomi}{55mm}{
(図は省略)
}
座標平面において媒介変数表示された曲線
\[ x=\sin t,\quad y=\sin 2t \quad (0 \leqq t \leqq \pi) \]
を考え,この曲線で囲まれた図形を$D$とする.右図はこの曲線の概形を表す.

(1)この曲線上の点$(x,\ y)$の$y$座標が最大になるのは$\displaystyle t=\frac{\pi}{[ア]}$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[イ]}}{[ウ]},\ [エ] \right)$であり,$y$座標が最小になるのは$\displaystyle t=\frac{[オ]}{[カ]} \pi$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[キ]}}{[ク]},\ [ケコ] \right)$である.また,この曲線が原点以外の点で$x$軸と交わるのは$\displaystyle t=\frac{\pi}{[サ]}$のときで,その交点の$x$座標は$[シ]$である.

(2)$\displaystyle \lim_{t \to +0} \frac{dy}{dx}=[ス]$であり,$\displaystyle \lim_{t \to \pi-0} \frac{dy}{dx}=[セソ]$である.

(3)図形$D$の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
(4)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積は$\displaystyle \frac{[ツ]}{[テト]} \pi$である.

\end{mawarikomi}
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,不等式$3^n>n^2$を示せ.
(2)正四面体$\mathrm{OABC}$において$\mathrm{OA}$の中点を$\mathrm{M}$,$\mathrm{BC}$の中点を$\mathrm{N}$とする.

(i) $\overrightarrow{\mathrm{MN}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(ii) 直線$\mathrm{MN}$と直線$\mathrm{BC}$は直交することを示せ.
埼玉工業大学 私立 埼玉工業大学 2015年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$上の点$\displaystyle \left( 4,\ \frac{17}{2} \right)$における接線を$\ell$とする.

(1)点$(4,\ 0)$を通り,接線$\ell$に直交する直線$m$の方程式は
\[ y=-\frac{[モ]}{[ヤ]}x+[ユ] \]
である.
(2)この放物線と直線$m$の$2$つの交点の$x$座標をそれぞれ$\alpha,\ \beta$(ただし$\alpha>\beta$)とすれば$\alpha$は
\[ \alpha=\frac{-[ヨ]+\sqrt{[ラリ]}}{[ル]} \]
である.
(3)この放物線と直線$m$および直線$x=0$で囲まれた図形のうち第$1$象限にある部分の面積を$S_1$,放物線と直線$m$および直線$x=4$で囲まれた図形の面積を$S_2$とする.このとき$2$つの面積の差は
\[ S_2-S_1=\frac{[レロ]}{3} \]
である.
名城大学 私立 名城大学 2015年 第3問
放物線$\displaystyle C:y=\frac{\sqrt{3}}{4}x^2$上の点$\mathrm{P}(2,\ \sqrt{3})$における接線を$\ell$とする.第$1$象限に中心をもつ円$O$が$x$軸に接し,かつ点$\mathrm{P}$で直線$\ell$に接するとき,次の各問に答えよ.

(1)点$\mathrm{P}$を通り,直線$\ell$に直交する直線の方程式を求めよ.
(2)円$O$の中心の座標と半径を求めよ.
(3)円$O$の外部において,放物線$C$,円$O$および$x$軸によって囲まれた部分の面積を求めよ.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2015年 第3問
ベクトル$(1,\ 1,\ -1)$と直交し,ベクトル$(1,\ 0,\ 1)$とのなす角が${30}^\circ$で,大きさが$\sqrt{6}$のベクトルは$2$つある.これらをすべて求めよ.
西南学院大学 私立 西南学院大学 2015年 第3問
放物線$C:y=x^2-x$上の点$\mathrm{P}(2,\ 2)$における$C$の接線を$\ell_1$とし,$C$の接線のうち$\ell_1$と直交する直線を$\ell_2$とする.このとき,以下の問に答えよ.

(1)$\ell_1$の方程式は,$y=[ナ]x-[ニ]$である.

(2)$\ell_2$の方程式は,$\displaystyle y=-\frac{[ヌ]}{[ネ]}x-\frac{[ノ]}{[ハ]}$である.

(3)$\ell_1,\ \ell_2,\ C$で囲まれる部分の面積は,
\[ \int_a^2 \left\{ (x^2-x)-\left( \mkakko{ナ}x-\mkakko{ニ} \right) \right\} \, dx+\int_b^a \left\{ (x^2-x)-\left( -\frac{\mkakko{ヌ}}{\mkakko{ネ}}x-\frac{\mkakko{ノ}}{\mkakko{ハ}} \right) \right\} \, dx \]
によって求められる.ただし,$\displaystyle a=\frac{[ヒ]}{[フ]}$,$\displaystyle b=\frac{[ヘ]}{[ホ]}$である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面上に曲線$\displaystyle C:y=\frac{1}{x}(x-t)(x-t-1)$(ただし$x>0,\ t>0$)がある.$C$上の点$\mathrm{P}(t,\ 0)$における接線を$\ell_1$,点$\mathrm{Q}(t+1,\ 0)$における接線を$\ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle t=\frac{1}{5}$の場合について考える.$\ell_1$の傾きは$[ア][イ]$,$\ell_2$の傾きは$\displaystyle \frac{[ウ]}{[エ]}$であり,点$\mathrm{R}$の$y$座標は$\displaystyle -\frac{[オ]}{[カ]}$である.また,$\ell_1$,$\ell_2$および$C$によって囲まれた部分の面積は
\[ \frac{[キ]}{[ク][ケ]} \log [コ]-\frac{[サ][シ]}{[ス][セ]} \]
である.
(2)$\ell_1$と$\ell_2$が直交するのは$\displaystyle t=\frac{[ソ][タ]+\sqrt{[チ]}}{[ツ]}$のときである.また,$\triangle \mathrm{PQR}$が二等辺三角形となるのは$\displaystyle t=\frac{[テ]}{[ト]}$のときである.
崇城大学 私立 崇城大学 2015年 第2問
放物線$y=-x^2+4$上に$x$座標が正である点$\mathrm{P}$をとる.点$\mathrm{P}$におけるこの放物線の接線と点$\mathrm{P}$で直交する直線を$\ell$とするとき,次の各問に答えよ.

(1)この放物線上の点$\displaystyle \left( -\frac{3}{2},\ \frac{7}{4} \right)$を通るような直線$\ell$の方程式を求めよ.
(2)この放物線と$x$軸で囲まれた図形は,$(1)$で求めた直線で$3$つの部分に分けられる.点$(0,\ 4)$,$(0,\ 3)$,$(0,\ 2)$を含む部分の面積をそれぞれ$S_1$,$S_2$,$S_3$とするとき,$S_1:S_2:S_3$を求めよ.
スポンサーリンク

「直交」とは・・・

 まだこのタグの説明は執筆されていません。