タグ「直交」の検索結果

16ページ目:全180問中151問~160問を表示)
京都教育大学 国立 京都教育大学 2011年 第5問
放物線$C:y=-x^2+1$上の異なる$2$点$\mathrm{A}(a,\ -a^2+1)$,$\mathrm{B}(b,\ -b^2+1)$におけるそれぞれの接線$\ell,\ m$が直交するとする.次の問に答えよ.

(1)任意の実数$r$に対して
\[ \alpha+\beta=r,\quad \alpha\beta=-\frac{1}{4} \]
をみたす実数$\alpha,\ \beta$が存在することを示せ.
(2)$\mathrm{A}$と$\mathrm{B}$が上の条件をみたしながら動くとき,直線$\mathrm{AB}$が$\mathrm{A}$と$\mathrm{B}$の取り方によらず常に通る点の座標を求めよ.
(3)$\ell$と$m$の交点の軌跡を求めよ.
早稲田大学 私立 早稲田大学 2011年 第5問
$a$を$0$でない実数とする.$2$つの異なる曲線
\[ C_1: y=x^2-2x+5,\quad C_2: y=ax^2+(1-3a)x+\frac{13}{8}\]
は,ある共有点$\mathrm{P}$で共通な接線$\ell$をもつ.さらに,曲線$C_2$上の点$\mathrm{Q}$において$\ell$以外の接線を,$\ell$と点$\mathrm{R}$で直交するように引く.このとき$a$の値は$\displaystyle \frac{[ソ]}{[タ]}$であり,共通接線$\ell$の方程式は$[チ]x-[ツ]y+[テ]=0$である.また,曲線$C_2$は$\triangle \mathrm{PQR}$の面積を$1:[ト]$に分ける.ただし,$[タ]$から$[ト]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2011年 第5問
四面体$\mathrm{OABC}$において$\mathrm{OA}=\mathrm{BC}=2$,$\mathrm{OB}=3$,$\mathrm{OC}=\mathrm{AB}=4$,$\mathrm{AC}=2\sqrt{6}$である.
また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}= \overrightarrow{\mathrm{OC}}$とする.以下の問に答えよ.

(1)内積$\overrightarrow{a}\cdot\overrightarrow{b},\ \overrightarrow{a}\cdot\overrightarrow{c},\ \overrightarrow{b}\cdot\overrightarrow{c}$を求めよ.
(2)$\triangle \mathrm{OAB}$を含む平面を$H$とする.$H$上の点$\mathrm{P}$で直線$\mathrm{PC}$と$H$が直交するものをとる.このとき,$\overrightarrow{\mathrm{OP}}=x\overrightarrow{a}+y\overrightarrow{b}$となる$x,\ y$を求めよ.
(3)平面$H$を直線$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BO}$で右図のように$7$つの \\
領域ア,イ,ウ,エ,オ,カ,キにわける.点$\mathrm{P}$はどの \\
領域に入るか答えよ.
\img{304_23_2011_1}{20}
(4)辺$\mathrm{AB}$で$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$のなす角は鋭角になるか,直角になるか,それとも鈍角になるかを判定せよ.ただし,$1$辺を共有する$2$つの三角形のなす角とは,共有する辺に直交する平面での$2$つの三角形の切り口のなす角のことである.
金沢工業大学 私立 金沢工業大学 2011年 第5問
$\mathrm{O}$を原点とする平面において,$\mathrm{OA}$,$\mathrm{OB}$を$2$辺とし,$\mathrm{OC}$を対角線とする平行四辺形$\mathrm{OACB}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくと,それぞれのベクトルの大きさは
\[ |\overrightarrow{a}|=2,\quad |\overrightarrow{b}|=3,\quad |\overrightarrow{c}|=\sqrt{19} \]
である.このとき,

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$であり,$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{[イ]}$である.

(2)ベクトル$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{b}$に直交する$t$の値を$t_0$とすると,$\displaystyle t_0=\frac{[ウエ]}{[オ]}$であり,$|\overrightarrow{a}+t_0 \overrightarrow{b}|=\sqrt{[カ]}$である.

(3)$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[キ]}{[ク]} \sqrt{[ケ]}$である.
北海学園大学 私立 北海学園大学 2011年 第5問
傾き$m$の直線$\ell_1$が放物線$y=x^2$に点$\mathrm{A}$で接している.また,直線$\ell_2$は点$\mathrm{B}$で$y=x^2$に接し,$\ell_1$に直交している.ただし,$m$は正の実数である.

(1)点$\mathrm{B}$の座標を$m$を用いて表せ.また,$\ell_2$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_2$の交点はある直線上の点である.その直線の方程式を求めよ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$を結ぶ直線と$y=x^2$で囲まれた部分の面積を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
傾き$m$の直線$\ell_1$が放物線$y=x^2$に点$\mathrm{A}$で接している.また,直線$\ell_2$は点$\mathrm{B}$で$y=x^2$に接し,$\ell_1$に直交している.ただし,$m$は正の実数である.

(1)点$\mathrm{B}$の座標を$m$を用いて表せ.また,$\ell_2$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_2$の交点はある直線上の点である.その直線の方程式を求めよ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$を結ぶ直線と$y=x^2$で囲まれた部分の面積を求めよ.
北海学園大学 私立 北海学園大学 2011年 第4問
点$\mathrm{P}$を直線$\ell_1:y=x$上の点とし,$2$点$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ$(-1,\ 0)$,$(0,\ 1)$とする.$\mathrm{P}$を通り$\ell_1$に直交する直線を$\ell_2$とする.また,$\ell_2$と$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線との交点を$\mathrm{Q}$とする.$\mathrm{P}$の$x$座標を$a$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<a<\frac{1}{2}$とする.

(1)$\ell_2$の方程式を$a$を用いて表せ.
(2)$\mathrm{Q}$の座標を$a$を用いて表せ.
(3)$\mathrm{Q}$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{R}$とする.四角形$\mathrm{OPQR}$を$x$軸の周りに$1$回転してできる回転体の体積$V$を$a$を用いて表せ.
立教大学 私立 立教大学 2011年 第3問
関数$y=-x^2+2x+2$のグラフに点$\mathrm{A}(0,\ a)$から$2$本の異なる接線が引けるとき,次の問に答えよ.

(1)点$\mathrm{A}$の$y$座標$a$が満たす条件を求めよ.
(2)点$\mathrm{A}$を通る$2$本の接線の式と接点の座標を$a$を用いて表せ.
(3)$2$本の接線が直交するときの$a$の値を求めよ.
(4)点$\mathrm{A}$を通る$2$本の接線と放物線で囲まれる図形を$y$軸で$2$つに分割したとき,右側の図形の面積を$S$とする.$(3)$で求めた$a$の値に対して$S$の面積を求めよ.
上智大学 私立 上智大学 2011年 第2問
座標平面上に曲線$C:y=-x^2$および,$C$上の$2$点$\mathrm{A}(a,\ -a^2)$,$\mathrm{B}(b,\ -b^2)$(ただし$a<b$)を考える.$\mathrm{A}$における$C$の接線を$\ell$,$\mathrm{B}$における$C$の接線を$m$とする.$2$直線$\ell$,$m$の交点を$\mathrm{P}(x,\ y)$とする.

(1)$\mathrm{P}(x,\ y)$の各座標を$a,\ b$で表すと,
\[ x=\frac{[ク]}{[ケ]}a+\frac{[コ]}{[サ]}b,\quad y=[シ]ab \]
である.
(2)$\ell$と$m$が直交するように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ス]x+[セ]y-1=0 \]
を満たす.
(3)$\angle \mathrm{APB}=135^\circ$であるように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ソ]x^2+[タ] \left( y+\frac{[チ]}{[ツ]} \right)^2+1=0 \]
を満たし,$x=0$のとき$\mathrm{P}(0,\ y)$の$y$座標は
\[ \frac{[テ]}{[ト]}+\frac{[ナ]}{[ニ]} \sqrt{[ヌ]} \]
である.
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
スポンサーリンク

「直交」とは・・・

 まだこのタグの説明は執筆されていません。