タグ「発散」の検索結果

1ページ目:全6問中1問~10問を表示)
信州大学 国立 信州大学 2015年 第4問
次の問いに答えよ.

(1)$\displaystyle a_n=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx (n=1,\ 2,\ 3,\ \cdots)$とおくと,無限級数$\displaystyle \sum_{n=1}^\infty a_n^2$は収束し,その和は$\displaystyle \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \, dx$であることが知られている.これを用いて,無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}$の和を求めよ.
(2)等式$\displaystyle \frac{1}{x^2(x+1)}=\frac{a}{x}+\frac{b}{x^2}+\frac{c}{x+1}$が$x$についての恒等式となるように,定数$a,\ b,\ c$の値を定めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2(n+1)}$の収束,発散について調べ,収束するときはその和を求めよ.
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)定積分
\[ \int_0^{2\pi} \sin \frac{7x}{3} \cos \frac{2x}{3} \, dx \]
を求めなさい.
(2)次の無限級数の収束,発散について調べ,収束する場合はその和を求めなさい.
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{(2n)^2-1}+\cdots \]
(3)$a$を定数とする.$x$についての方程式
\[ 1-4 \cos^2 x=a \quad (0 \leqq x<\pi) \]
の異なる解の個数を調べなさい.
横浜市立大学 公立 横浜市立大学 2014年 第3問
$a$を正の実数とする.放物線$y^2=4ax$上に$2$点$\mathrm{O}(0,\ 0)$と$\mathrm{A}(x_1,\ y_1)$をとる.$y_1>0$として,以下の問いに答えよ.

(1)$\alpha>0$として,関数$F(t)$を
\[ F(t)=\frac{1}{2} \{t \sqrt{t^2+\alpha}+\alpha \log (t+\sqrt{t^2+\alpha}) \} \]
とおく.導関数$F^\prime(t)$を求めよ.
(2)点$\mathrm{O}$から点$\mathrm{A}$までの曲線の長さ$L$を$x_1$の関数として表せ.ただし,$x=0$で値が発散する関数$g(x)$については
\[ \int_0^a g(x) \, dx=\lim_{s \to +0} \int_s^a g(x) \, dx \]
と解釈する($a>s>0$).
宇都宮大学 国立 宇都宮大学 2012年 第6問
関数$y=e^{-x}$のグラフを$C$とする.$C$上の点P$(t,\ e^{-t})$における接線と$x$軸との交点をQ$(u,\ 0)$とする.$C$上の点$(u,\ e^{-u})$をRとするとき,次の問いに答えよ.

(1)$u$を$t$の式で表せ.
(2)線分PQ,線分QRと$C$で囲まれた部分を図形Aとする.図形Aを$x$軸のまわりに1回転してできる立体の体積$V$を$t$の式で表せ.
(3)(1)の$u$を$t$の関数とみて$u(t)$と表す.数列$\{t_n\}$を$t_1=0,\ t_{n+1}=u(t_n) \ (n=1,\ 2,\ \cdots)$と定義するとき,一般項$t_n$を求めよ.
(4)(2)の$V$を$t$の関数とみて$V(t)$と表し,(3)の$t_n$を用いて$V_n=V(t_n) \ (n=1,\ 2,\ \cdots)$とおく.数列$\{V_n\}$は等比数列であることを示し,無限等比級数
\[ V_1+V_2+\cdots +V_n+\cdots \]
の収束,発散を調べ,収束する場合は,その和を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第1問
三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$は辺$\mathrm{A}_0 \mathrm{B}_0$の長さが$a$,$\angle \mathrm{A}_0=60^\circ$,$\angle \mathrm{B}_0=90^\circ$の直角三角形であり,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$は辺${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime$の長さが$a$,$\angle {\mathrm{A}_0}^\prime=45^\circ$,$\angle {\mathrm{B}_0}^\prime=90^\circ$の直角三角形である.右図に示すように三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の$3$つの辺上にそれぞれ点$\mathrm{D}_1$,$\mathrm{A}_1$,$\mathrm{B}_1$をとり,正方形$\mathrm{B}_0 \mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$を作る.次に,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}$の$3$つの辺上に点$\mathrm{D}_2$,$\mathrm{A}_2$,$\mathrm{B}_2$をとり,正方形$\mathrm{B}_1 \mathrm{D}_2 \mathrm{A}_2 \mathrm{B}_2$を作る.これを繰り返し,正方形$\mathrm{B}_{j-1} \mathrm{D}_j \mathrm{A}_j \mathrm{B}_j$を作る.その正方形の面積を$S_j$とおく.ただし,$j=1,\ 2,\ \cdots$である.同様な操作で,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$にも正方形${\mathrm{B}_{j-1}}^\prime {\mathrm{D}_j}^\prime {\mathrm{A}_j}^\prime {\mathrm{B}_j}^\prime$を作り,その正方形の面積を${S_j}^\prime$とおく.これらの図形について以下の問いに答えよ.
(図は省略)

(1)$S_1$を$a$を用いた式で示せ.
(2)$S_j$を$a$と$j$を用いた式で示せ.
(3)三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$内に正方形を描くことを無限に繰り返すとき,正方形の面積の総和$S_\mathrm{T}$が三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の面積$S_0$に占める割合を求めよ.
(4)$\displaystyle c_j=\frac{S_{j+2}}{{S_j}^\prime}$で定義される一般項$c_j$を持つ無限級数は,収束するか発散するかを,根拠を式で示した上で答えよ.
高知工科大学 公立 高知工科大学 2010年 第3問
関数列
\[ f_n(x)=x^{n-1},\quad g_n(x)=\sum_{k=1}^n (-1)^{k-1}f_k(x) \quad (n=1,\ 2,\ \cdots) \]
について,次の各問に答えよ.

(1)$\displaystyle F_n(x) = \int_0^x f_n(t) \, dt$を求めよ.
(2)$\{g_n(x)\}$が数列として収束するための実数$x$の条件を求めよ.また,$x$がこの条件を満たすとき$\displaystyle g(x)=\lim_{n \to \infty}g_n(x)$とおく.
\[ \int_0^x g(t) \, dt \]
を求めよ.
(3)(1)の$F_n(x)$について
\[ -F_{n+1}(1) \leqq \int_0^1 \frac{(-1)^n f_{n+1}(t)}{1+t} \, dt \leqq F_{n+1}(1) \]
が成り立つことを証明せよ.
(4)無限級数
\[ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +(-1)^{n-1} \frac{1}{n}+\cdots \]
の収束,発散について調べ,収束すればその和を求めよ.
スポンサーリンク

「発散」とは・・・

 まだこのタグの説明は執筆されていません。