タグ「番目」の検索結果

1ページ目:全23問中1問~10問を表示)
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第1問
\begin{mawarikomi}{50mm}{(図は省略)}
$1$辺の長さが$a$の正方形$\mathrm{S}_1$に内接する円を描き,この円に内接する正方形$\mathrm{S}_2$を描いて,正方形$\mathrm{S}_1$から正方形$\mathrm{S}_2$を除いた領域$\mathrm{B}_1$を黒く塗る.次に正方形$\mathrm{S}_2$に内接する円を描き,この円に内接する正方形$\mathrm{S}_3$を描いて,正方形$\mathrm{S}_2$から正方形$\mathrm{S}_3$を除いた領域$\mathrm{W}_1$を白く塗る.同様に$m$番目の正方形$\mathrm{S}_m$の内接円に内接する正方形$\mathrm{S}_{m+1}$を描き,正方形$\mathrm{S}_m$から正方形$\mathrm{S}_{m+1}$を除いた領域を黒,白,黒,白と交互に塗ることを繰り返す.ただし,$m$は自然数であるとする.以下の問いに答えよ.
\end{mawarikomi}

(1)$\mathrm{S}_1$から$\mathrm{S}_2$を除いた黒い領域$\mathrm{B}_1$の面積を$a$を用いて表せ.
(2)$\mathrm{S}_2$から$\mathrm{S}_3$を除いた白い領域$\mathrm{W}_1$の面積を$a$を用いて表せ.
(3)$1$番目の黒い領域$\mathrm{B}_1$から$n$番目の黒い領域$\mathrm{B}_n$までの面積の和を$a$と$n$を用いて表せ.ただし,$n$は自然数であるとする.
(4)黒い領域$\mathrm{B}_1$から$\mathrm{B}_n$までの面積の和において,$n \to \infty$としたときの極限$P$を$a$を用いて表せ.
(5)$1$番目の白い領域$\mathrm{W}_1$から$n$番目の白い領域$\mathrm{W}_n$までの面積の和を求め,$n \to \infty$としたときの極限$Q$を$a$を用いて表せ.次に$\displaystyle \frac{P}{Q}$の値を求めよ.
浜松医科大学 国立 浜松医科大学 2015年 第2問
整数ではない実数$x$に対して$\displaystyle f(x)=\frac{1}{x-[x]}$と定める.ただし,$[x]$は$l<x<l+1$を満たす整数$l$を表す.以下の問いに答えよ.

(1)$f(\sqrt{2}),\ f(f(\sqrt{2}))$を計算し,簡潔な形で答えよ.
(2)$f(\sqrt{3}),\ f(f(\sqrt{3})),\ f(f(f(\sqrt{3})))$を計算し,簡潔な形で答えよ.
(3)自然数$n$に対して,$n<x<n+1$かつ$f(x)=x$を満たす$x$を求めよ.
(4)自然数$n$を$1$つ固定する.$n<x<n+1$の範囲の$x$で,$f(x)$が整数ではなく,さらに$f(f(x))=x$を満たす$x$を大きい順に並べる.その中の$x$で$f(x)=x$を満たすものは何番目に現れるかを答えよ.
九州工業大学 国立 九州工業大学 2015年 第2問
初項$1$,公差$3$の等差数列$\{a_n\}$と,一般項が$\displaystyle b_n=\left[ \frac{2n+2}{3} \right]$で与えられる数列$\{b_n\}$がある.ここで,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.たとえば,$\displaystyle b_1=\left[ \frac{4}{3} \right]=1$,$b_2=[2]=2$,$\displaystyle b_3=\left[ \frac{8}{3} \right]=2$である.数列$\{a_n\}$を次のように,$b_1$個,$b_2$個,$b_3$個,$\cdots$の群に分け,第$k$群には$b_k$個の数が入るようにする.

$\big| \quad a_1 \quad \big| \quad a_2,\ a_3 \quad \big| \quad a_4,\ a_5 \quad \big| \quad a_6,\ \cdots$
\ 第$1$群 \quad 第$2$群 \qquad\ 第$3$群 \qquad $\cdots$

第$k$群の最初の数を$c_k$とする.次に答えよ.

(1)自然数$m$に対して,$b_{3m-2}$,$b_{3m-1}$,$b_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{b_n\}$の初項から第$3m$項までの和$S_{3m}$を求めよ.
(2)自然数$m$に対して,$c_{3m-2}$,$c_{3m-1}$,$c_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{c_k\}$の初項から第$3m$項までの和$T_{3m}$を求めよ.
(3)$1000$は第何群の何番目の数か.
(4)$x \geqq 1$のとき$\displaystyle \sqrt{x^2+1}<x+\frac{1}{2}$であることを用いて,次の不等式が成り立つことを示せ.ただし,$m$は自然数とする.
\[ \sum_{k=1}^{3m} (\sqrt{c_k}-k)<\frac{m}{2} \]
立教大学 私立 立教大学 2015年 第3問
次の条件を満たす数列$\{a_n\}$を考える.
\[ a_1=4,\quad a_{n+1}=\frac{1}{2} \{3+(-1)^n\}a_n-1 \quad (n=1,\ 2,\ \cdots) \]
このとき,次の問に答えよ.

(1)奇数番目の項のみからなる数列を$\{b_n\}$,偶数番目の項のみからなる数列を$\{c_n\}$とする.つまり,$b_n=a_{2n-1}$,$c_n=a_{2n}$とする.$b_{n+1}$,$c_n$,$b_n$が次の関係式を満たすとき,定数$A,\ B,\ C,\ D$の値をそれぞれ求めよ.
\[ \begin{array}{r}
b_{n+1}=Ac_n+B \\
\phantom{\frac{[ ]}{2}} c_n=Cb_n+D
\end{array} \qquad (n=1,\ 2,\ \cdots) \]
(2)$(1)$において$c_n$を消去し,$b_{n+1}$を$b_n$を用いて表せ.
(3)数列$\{b_n\}$,$\{c_n\}$の一般項をそれぞれ$n$を用いて表せ.
(4)数列$\{a_n\}$の第$1$項から第$2k$項までの和$S_{2k}$を$k$を用いて表せ.
中央大学 私立 中央大学 2015年 第1問
次の各問いに答えよ.

(1)$\displaystyle x=\frac{1-\sqrt{3}}{2}$のとき,$\displaystyle x^2+\frac{1}{x^2}$の値を求めよ.ただし,分母は有理化して答えよ.
(2)初項から第$3$項までの和が$-63$,初項から第$6$項までの和が$-4095$である等比数列の初項と公比を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を$1$回ずつ使って$5$桁の数を作る.このとき,$31402$は小さい方から数えて何番目の数か.
(4)次の方程式を解け.
\[ 2 \log_2 x=\log_2 (x+4)+1 \]
(5)直線$y=3x+a$は曲線$y=x^3$に点$\mathrm{A}$で接する.ただし,$a>0$とする.原点を$\mathrm{O}$とし,直線と曲線の接点以外の共有点を$\mathrm{B}$とするとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(6)定積分$\displaystyle \int_{-1}^2 |x-1| \, dx$の値を求めよ.
昭和大学 私立 昭和大学 2015年 第2問
正の整数$a,\ b$の組$(a,\ b)$の全体を
\[ (1,\ 1),\ (1,\ 2),\ (2,\ 1),\ (1,\ 3),\ \cdots \]
のように$1$列に並べる.ここで,$2$つの組$(a_i,\ b_i) (i=1,\ 2)$について,$a_1+b_1<a_2+b_2$ならば$(a_1,\ b_1)$の方を先に並べ,また,$a_1+b_1=a_2+b_2$ならば,$a_1<a_2$のとき$(a_1,\ b_1)$の方を先に並べるものとする.次の各問に答えよ.なお,必要ならば公式
\[ \sum_{k=1}^n k^3=\left\{ \frac{1}{2}n(n+1) \right\}^2 \]
を使ってよい.

(1)組$(5,\ 5)$は初めから何番目にあるか.
(2)$m,\ n$を正の整数とする.組$(m,\ n)$は初めから何番目にあるか.
(3)初めから$200$番目にある組を求めよ.
(4)初めから$n$番目の組が$(a,\ b)$であるとき,$c_n=ab$とおく.和$c_1+\cdots +c_{200}$を求めよ.
金沢大学 国立 金沢大学 2014年 第4問
自然数が$1$つずつ書かれている玉が,
\[ ① ① ② ① ② ③ ① ② ③ ④ ① ② ③ ④ ⑤ ① ② \cdots\cdots \]
のように$1$列に並べられている.次の問いに答えよ.

(1)数$100$が書かれた玉が最初に現れるのは何番目か.
(2)自然数$n$に対し,$2n^2$番目の玉に書かれている数は何か.
(3)$1$番目から$2n^2$番目までの玉をすべて袋に入れた.この袋から$2$つの玉を取り出すとき,同じ数が書かれた玉を取り出す確率を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第1問
$1 \leqq n<m$をみたす自然数の組を$(m,\ n)$と表し,これらを次の規則で順番に並べる.

(i) $1$番目は組$(2,\ 1)$とする.
(ii) $k$番目が組$(m,\ n)$のとき,
$n<m-1$ならば,$k+1$番目は組$(m,\ n+1)$とし,
$n=m-1$ならば,$k+1$番目は組$(m+1,\ 1)$とする.

例えば,$2$番目の組は$(3,\ 1)$,$3$番目の組は$(3,\ 2)$,$4$番目の組は$(4,\ 1)$,$5$番目の組は$(4,\ 2)$となる.次の問いに答えよ.

(1)$20$番目の自然数の組を求めよ.
(2)$m$を$2$以上の自然数とするとき,組$(m,\ 1)$は何番目かを答えよ.
(3)$1 \leqq n<m \leqq 5$をみたすすべての組$(m,\ n)$を考える.組$(m,\ n)$から分数$\displaystyle \frac{n}{m}$を作るとき,これらの分数の総和を求めよ.
(4)$l$を$2$以上の自然数とする.$1 \leqq n<m \leqq l$をみたすすべての組$(m,\ n)$から作る分数$\displaystyle \frac{n}{m}$の総和が$\displaystyle \frac{4753}{2}$であるとき,$l$の値を求めよ.
岩手県立大学 公立 岩手県立大学 2014年 第3問
以下の問いに答えなさい.

次の数列$\{a_m\}$について,第$n$群が$n$個の項を含むように分ける.
\[ 56 \;|\; 39,\ 24 \;|\; 11,\ 0,\ -9 \;|\; -16,\ -21,\ -24,\ -25 \;|\; -24,\ -21,\ -16,\ \cdots \]
(1)この数列の一般項$a_m$を答えなさい.
(2)第$n$群の最初の項を$n$を用いて表しなさい.
(3)値がはじめて$175$以上となるのは,第何群の第何番目の項か,答えなさい.
琉球大学 国立 琉球大学 2013年 第3問
$a$を自然数とする.赤球$3$個,白球$a$個が入った袋から一つずつ順に取り出す操作をすべての球を取り出すまで繰り返す.ただし,取り出した球は元に戻さない.このとき,$2$個目の赤球が出る前までに取り出した球の数を$X$とする.次の問いに答えよ.

(1)$a=4$とする.$3$番目までに赤球が$1$個だけ出て,$4$番目が赤球である確率を求めよ.
(2)$X=n$となる確率を$p_n$とする.$p_n$が最大となる$n$の値を$a$を用いて表せ.
(3)$X$の期待値を求めよ.
スポンサーリンク

「番目」とは・・・

 まだこのタグの説明は執筆されていません。