タグ「用意」の検索結果

3ページ目:全27問中21問~30問を表示)
安田女子大学 私立 安田女子大学 2012年 第3問
$1$辺の長さが$1$の正方形の紙を用意し,頂点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の図のように,正方形の各辺を底辺とする高さ$x$の$4$つの二等辺三角形$\triangle \mathrm{ABE}$,$\triangle \mathrm{BCF}$,$\triangle \mathrm{CDG}$,$\triangle \mathrm{DAH}$を正方形から切り取り,残りを図の$4$本の線分$\mathrm{EF}$,$\mathrm{FG}$,$\mathrm{GH}$,$\mathrm{HE}$にそって折り曲げて,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が$1$点になるように辺を合わせて四角錐を作るとする.ただし,$\displaystyle 0<x<\frac{1}{2}$とする.このとき,次の問いに答えよ.
(図は省略)

(1)この四角錐の底面となる正方形$\mathrm{EFGH}$の面積を求めよ.
(2)この四角錐の表面積となる図の斜線部分の面積を求めよ.
(3)$(2)$で求めた四角錐の表面積が$\displaystyle \frac{1}{2}$のとき,この四角錐の体積を求めよ.
北海道大学 国立 北海道大学 2011年 第4問
$n$を$2$以上の自然数,$q$と$r$を自然数とする.$1$から$nq$までの番号がついた$nq$個の白玉,$1$から$nr$までの番号がついた$nr$個の赤玉を用意する.これら白玉と赤玉を,$1$番から$n$番まで番号づけられた$n$個の箱それぞれに,小さい番号から順に白玉は$q$個ずつ,赤玉は$r$個ずつ配分しておく.たとえば,$1$番目の箱には番号$1$から$q$の白玉と番号$1$から$r$までの赤玉が入っている.これら$n(q+r)$個の玉を$n$個の箱に以下のように再配分する.$1$番の箱から$1$個の玉を取り出して$2$番の箱に移し,次に$2$番の箱から$1$個の玉を取り出して$3$番の箱に移す.同様の操作を順次繰り返し最後に$n$番の箱に$1$個の玉を移して終了する.このようにして実現され得る再配分の総数を$s_n$とし,$n$番の箱の白玉が$q+1$個であるような再配分の総数を$a_n$とする.

(1)$s_2$を求めよ.
(2)$s_3$と$a_3$を求めよ.
(3)$s_4$と$a_4$を求めよ.
北海道大学 国立 北海道大学 2011年 第4問
$n$を2以上の自然数,$q$と$r$を自然数とする.1から$nq$までの番号がついた$nq$個の白玉,1から$nr$までの番号がついた$nr$個の赤玉を用意する.これら白玉と赤玉を,1番から$n$番まで番号づけられた$n$個の箱それぞれに,小さい番号から順に白玉は$q$個ずつ,赤玉は$r$個ずつ配分しておく.たとえば,1番目の箱には番号1から$q$の白玉と番号1から$r$までの赤玉が入っている.これら$n(q+r)$個の玉を$n$個の箱に以下のように再配分する.1番の箱から1個の玉を取り出して2番の箱に移し,次に2番の箱から1個の玉を取り出して3番の箱に移す.同様の操作を順次繰り返し最後に$n$番の箱に1個の玉を移して終了する.このようにして実現され得る再配分の総数を$s_n$とし,$n$番の箱の白玉が$q+1$個であるような再配分の総数を$a_n$とする.

(1)$a_3$と$a_3$を求めよ.
(2)$s_n$を求めよ.
(3)$a_{n+1}-a_n$を求めよ.
(4)$a_n$を求めよ.
福井大学 国立 福井大学 2011年 第3問
表の出る確率が$p$,裏の出る確率が$1-p$のコイン8枚と,1つの箱が用意されている.最初,箱には8枚のコインのうちの1枚が入っており,次の操作を繰り返し行う.

(操作) \quad 箱の中のコインをすべて取り出し同時に投げる.裏の出たコインはそのまま箱に戻す.表の出たコインはその枚数を数え,同数のコインを新たに追加して箱に戻す.

例えば,箱の中に3枚のコインがあり,それらを投げた結果,表が2枚,裏が1枚出たとすると,操作の結果,箱の中のコインは,2枚追加されて5枚になる.以下の問いに答えよ.

(1)2回目の操作の終了時,箱の中にあるコインが2枚である確率を$p$を用いて表せ.
(2)2回目の操作の終了時,箱の中にあるコインの枚数の期待値を$p$を用いて表せ.
(3)3回目の操作の終了時,箱の中にあるコインが6枚以下である確率を$p$を用いて表せ.
愛知教育大学 国立 愛知教育大学 2011年 第2問
$1$辺の長さが$2$の正方形の紙を用意し,頂点を$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$, \\
$\mathrm{A}_4$と名づける.右図のように,正方形の各辺を底辺とする高さ \\
$1-t \ (0<t<1)$の$4$つの二等辺三角形$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{B}_1$, \\
$\triangle \mathrm{A}_2 \mathrm{A}_3 \mathrm{B}_2$,$\triangle \mathrm{A}_3 \mathrm{A}_4 \mathrm{B}_3$,$\triangle \mathrm{A}_4 \mathrm{A}_1 \mathrm{B}_4$を正方形から切り離す. \\
そして,4本の線分$\mathrm{B}_1 \mathrm{B}_2$,$\mathrm{B}_2 \mathrm{B}_3$,$\mathrm{B}_3 \mathrm{B}_4$,$\mathrm{B}_4 \mathrm{B}_1$で紙を折り, \\
点$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$が1点になるように辺を貼り合わせて四角すいを作る.このとき,以下の問いに答えよ.
\img{409_2566_2011_1}{55}


(1)この四角すいの表面積$S$を$t$の式で表せ.
(2)この四角すいの体積$V$を$t$の式で表せ.
(3)$\displaystyle \left( \frac{V}{S} \right)^2$を$f(t)$とおくとき,$f(t)$が3次関数になることを示し,$f(t)$の最大値とそのときの$t$の値を求めよ.
東京大学 国立 東京大学 2010年 第3問
$2$つの箱LとR,ボール$30$個,コイン投げで表と裏が等確率$\displaystyle \frac{1}{2}$で出るコイン1枚を用意する.$x$を$0$以上$30$以下の整数とする.Lに$x$個,Rに$30-x$個のボールを入れ,次の操作$(\sharp)$を繰り返す.

\mon[$(\sharp)$] 箱Lに入っているボールの個数を$z$とする.コインを投げ,表が出れば箱Rから箱Lに,裏が出れば箱Lから箱Rに,$K(z)$個のボールを移す.ただし,$0 \leqq z \leqq 15$のとき$K(z)=z$,$16 \leqq z \leqq 30$のとき$K(z)=30-z$とする.

$m$回の操作の後,箱Lのボールの個数が$30$である確率を$P_m(x)$とする.たとえば$\displaystyle P_1(15)=P_2(15)=\frac{1}{2}$となる.以下の問(1),(2),(3)に答えよ.

(1)$m \geqq 2$のとき,$x$に対してうまく$y$を選び,$P_m(x)$を$P_{m-1}(y)$で表せ.
(2)$n$を自然数とするとき,$P_{2n}(10)$を求めよ.
(3)$n$を自然数とするとき,$P_{4n}(6)$を求めよ.
東京大学 国立 東京大学 2010年 第3問
2つの箱LとR,ボール30個,コイン投げで表と裏が等確率$\displaystyle \frac{1}{2}$で出るコイン1枚を用意する.$x$を0以上30以下の整数とする.Lに$x$個,Rに$30-x$個のボールを入れ,次の操作$(\sharp)$を繰り返す.

\mon[$(\sharp)$] 箱Lに入っているボールの個数を$z$とする.コインを投げ,表が出れば箱Rから箱Lに,裏が出れば箱Lから箱Rに,$K(z)$個のボールを移す.ただし,$0 \leqq z \leqq 15$のとき$K(z)=z$,$16 \leqq z \leqq 30$のとき$K(z)=30-z$とする.

$m$回の操作の後,箱Lのボールの個数が30である確率を$P_m(x)$とする.たとえば$\displaystyle P_1(15)=P_2(15)=\frac{1}{2}$となる.以下の問(1),(2)に答えよ.

(1)$m \geqq 2$のとき,$x$に対してうまく$y$を選び,$P_m(x)$を$P_{m-1}(y)$で表せ.
(2)$n$を自然数とするとき,$P_{2n}(10)$を求めよ.
スポンサーリンク

「用意」とは・・・

 まだこのタグの説明は執筆されていません。