タグ「球面」の検索結果

5ページ目:全50問中41問~50問を表示)
京都大学 国立 京都大学 2011年 第6問
空間内に四面体$\mathrm{ABCD}$を考える.このとき.$4$つの頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を同時に通る球面が存在することを示せ.
九州大学 国立 九州大学 2011年 第4問
空間内の$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(0,\ 2,\ 3),\quad \mathrm{B}(1,\ 0,\ 3),\quad \mathrm{C}(1,\ 2,\ 0) \]
を考える.このとき,以下の問いに答えよ.

(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心$\mathrm{D}$の座標を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に点$\mathrm{D}$から垂線を引き,交点を$\mathrm{F}$とする.線分$\mathrm{DF}$の長さを求めよ.
(3)四面体$\mathrm{ABCD}$の体積を求めよ.
北海道大学 国立 北海道大学 2011年 第3問
次の問いに答えよ.

(1)$xy$平面上の3点O$(0,\ 0)$,A$(2,\ 1)$,B$(1,\ 2)$を通る円の方程式を求めよ.
(2)$t$が実数全体を動くとき,$xyz$空間内の点$(t +2,\ t +2,\ t)$がつくる直線を$\ell$とする.3点O$(0,\ 0,\ 0)$,A$^\prime (2,\ 1,\ 0)$,B$^\prime (1,\ 2,\ 0)$を通り,中心をC$(a,\ b,\ c)$とする球面$S$が直線$\ell$と共有点をもつとき,$a,\ b,\ c$の満たす条件を求めよ.
琉球大学 国立 琉球大学 2011年 第2問
中心が$(2,\ 0,\ 1)$,半径が$2\sqrt{5}$の球面が$yz$平面と交わってできる円を$C$とする.次の問いに答えよ.

(1)$C$の中心の座標と半径を求めよ.
(2)点Pは$C$上を動き,点Qは$xy$平面上の直線$x=y$上を動くとする.線分PQの長さの最小値,およびそのときのP,Qの座標を求めよ.
上智大学 私立 上智大学 2011年 第3問
$xyz$空間内の正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$はすべて原点$\mathrm{O}$を中心とする半径$1$の球面$S$上にある.$\mathrm{A}$の座標は$(0,\ 0,\ 1)$であり,$\mathrm{B}$の$x$座標は正,$y$座標は$0$である.また,$\mathrm{C}$の$y$座標は$\mathrm{D}$の$y$座標より大きい.

(1)$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$z$座標は$\displaystyle \frac{[ニ]}{[ヌ]}$である.

(2)$\mathrm{C}$の$x$座標は$\displaystyle \frac{[ネ]}{[ノ]} \sqrt{[ハ]}$である.

(3)$\mathrm{O}$を端点とし$\triangle \mathrm{ABC}$の重心を通る半直線が$S$と交わる点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さは$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$,ベクトル$\overrightarrow{\mathrm{AP}}$とベクトル$\overrightarrow{\mathrm{BP}}$の内積は$[ホ]$である.

以後,四面体$\mathrm{PABC}$を$V_\mathrm{p}$で表す.

(4)$\triangle \mathrm{APB}$の面積は$\displaystyle \frac{[マ]}{[ミ]}$である.

(5)$(3)$で$\triangle \mathrm{ABC}$に対して点$\mathrm{P}$および四面体$V_\mathrm{p}$を定めたときと同様に,$\triangle \mathrm{ACD}$,$\triangle \mathrm{ABD}$,$\triangle \mathrm{BCD}$に対してそれぞれ点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{T}$および四面体$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$を定める.四面体$\mathrm{ABCD}$と$V_\mathrm{P}$,$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$をあわせた立体を$V$とすると,$V$の表面積は$[ム]$であり,$V$の体積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
金沢大学 国立 金沢大学 2010年 第2問
座標空間において,中心がA$(0,\ 0,\ a) \ (a>0)$で半径が$r$の球面
\[ x^2+y^2+(z-a)^2 = r^2 \]
は,点B$(\sqrt{5},\ \sqrt{5},\ a)$と点$(1,\ 0,\ -1)$を通るものとする.次の問いに答えよ.

(1)$r$と$a$の値を求めよ.
(2)点P$(\cos t,\ \sin t,\ -1)$について,ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を求めよ.さらに内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AP}}$を求めよ.
(3)$\triangle$ABPの面積$S$を$t$を用いて表せ.また,$t$が$0 \leqq t \leqq 2\pi$の範囲を動くとき,$S$の最小値と,そのときの$t$の値を求めよ.
東京農工大学 国立 東京農工大学 2010年 第1問
Oを原点とする座標空間にある,中心C$(1,\ 1,\ \sqrt{10})$,半径$3\sqrt{3}$の球面を$S$とする.次の問いに答えよ.

(1)$S$と$x$軸の正の部分との交点をPとし,$S$と$y$軸の正の部分との交点をQとする.P,Qの座標を求めよ.
(2)2点O,Cを通る直線と$S$との交点のうち,$z$座標が正であるものをRとする.Rの座標を求めよ.
(3)四面体OPQRの体積$V$を求めよ.
(4)4点O,P,Q,Rを通る球面の半径$r_1$を求めよ.
(5)四面体OPQRに内接する球面の半径を$r_2$とする.このとき,$\displaystyle \frac{r_1}{r_2}$の値を求めよ.
京都教育大学 国立 京都教育大学 2010年 第4問
中心が$(0,\ 0,\ 1)$,半径が1の球面が,$yz$平面に平行で点$(a,\ 0,\ 0) \ (0<a<1)$を通る平面と交わってできる図形を$C$とする.これに対して,次の問に答えよ.

(1)$C$上の点$\mathrm{P}(a,\ y_1,\ z_1)$と点$\mathrm{Q}(0,\ 0,\ 2)$を通る直線$\mathrm{PQ}$が$xy$平面と交わる点を$\mathrm{R}(x,\ y,\ 0)$とする.$y_1$と$z_1$のそれぞれを$a,\ x,\ y$を使って表せ.
(2)点$\mathrm{P}$が$C$上を動くとき,点$\mathrm{R}$の軌跡を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第4問
空間上に相異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$は互いに直交している.次の問いに答えよ.

(1)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からの距離が全て等しくなる点がただ一つ存在する.この点を$\mathrm{G}$とする.線分$\mathrm{OA}$の中点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{MG}}$が直交することを用いて,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}=\frac{1}{2}|\overrightarrow{\mathrm{OA}}|^2 \]
となることを示せ.ただし,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OG}}$の内積とする.
(2)(1)を用いて,
\[ \overrightarrow{\mathrm{OG}}=\frac{1}{2}(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}) \]
が成り立つことを示せ.
(3)$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{P}(1,\ \sqrt{3},\ 0)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{6}}{2},\ \frac{\sqrt{2}}{2},\ \sqrt{2} \right)$,$\displaystyle \mathrm{R} \left( \frac{\sqrt{6}}{4},\ -\frac{\sqrt{2}}{4},\ \frac{\sqrt{2}}{2} \right)$とする.このとき線分$\mathrm{OP}$,$\mathrm{OQ}$,$\mathrm{OR}$は互いに直交していることを示せ.また,$4$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る球面の半径を求めよ.
早稲田大学 私立 早稲田大学 2010年 第2問
$2$平面$\pi_1$,$\pi_2$がある.$\pi_1$は$3$点$(1,\ 1,\ 7)$,$(2,\ 1,\ 5)$,$(1,\ 2,\ 5)$を通り,$\pi_2$は$3$点$(2,\ 1,\ 5)$,$(2,\ 3,\ 4)$,$(6,\ 0,\ 5)$を通る.

(1)平面$\pi_2$上の点$(x,\ y,\ z)$は関係式$x+[ソ]y+[タ]z-[$4$][チ]=0$を満たす.
(2)$2$平面$\pi_1$,$\pi_2$の交線は点$\mathrm{A}(-2,\ [ツ],\ [テ])$を通る.
(3)$2$平面の交線に垂直で平面$\pi_1$に平行なベクトル$\overrightarrow{a}$は$([ト],\ [ナ],\ -2)$で,$2$平面の交線に垂直で平面$\pi_2$に平行なベクトル$\overrightarrow{b}$は$([$1$][ニ],\ 10,\ -[ヌ])$である.
(4)$\mathrm{O}$を原点とすると,$2$平面$\pi_1$,$\pi_2$に接する半径$15$の球面の中心$\mathrm{P}$が
\[ \overrightarrow{\mathrm{OP}} = \overrightarrow{\mathrm{OA}} + s\overrightarrow{a} + t\overrightarrow{b} \quad (s>0,\ t>0) \]
を満たすとき,$\mathrm{P}$の座標は$([$2$][ネ],\ [$1$][ノ],\ -22)$である.
スポンサーリンク

「球面」とは・・・

 まだこのタグの説明は執筆されていません。