タグ「球面」の検索結果

2ページ目:全50問中11問~20問を表示)
東京女子大学 私立 東京女子大学 2016年 第3問
座標空間において$\mathrm{N}(0,\ 0,\ 1)$,$\mathrm{P}(a,\ b,\ 0)$とする.原点を中心とする半径$1$の球面と直線$\mathrm{NP}$との$\mathrm{N}$以外の交点を$\mathrm{Q}(x,\ y,\ z)$とする.このとき,以下の設問に答えよ.

(1)$\overrightarrow{\mathrm{NQ}}=t \overrightarrow{\mathrm{NP}}$をみたす実数$t$を$a,\ b$で表せ.
(2)$x,\ y,\ z$を,それぞれ$a,\ b$で表せ.
(3)$a,\ b$を,それぞれ$x,\ y,\ z$で表せ.
京都大学 国立 京都大学 2015年 第4問
$xyz$空間の中で,$(0,\ 0,\ 1)$を中心とする半径$1$の球面$S$を考える.点$\mathrm{Q}$が$(0,\ 0,\ 2)$以外の$S$上の点を動くとき,点$\mathrm{Q}$と点$\mathrm{P}(1,\ 0,\ 2)$の$2$点を通る直線$\ell$と平面$z=0$との交点を$\mathrm{R}$とおく.$\mathrm{R}$の動く範囲を求め,図示せよ.
岡山大学 国立 岡山大学 2015年 第2問
座標空間内に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$をとり,$2$つのベクトル$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{CP}}$の内積が$0$になるような点$\mathrm{P}(x,\ y,\ z)$の集合を$S$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)集合$S$は球面であることを示し,その中心$\mathrm{Q}$の座標と半径$r$の値を求めよ.
(2)原点$\mathrm{O}$から最も遠い距離にある$S$上の点の座標を求めよ.
(3)$(1)$で求めた点$\mathrm{Q}$は,平面$\alpha$上にあることを示せ.
(4)$(1)$で求めた点$\mathrm{Q}$を通って平面$\alpha$に垂直な直線を$\ell$とする.球面$S$と直線$\ell$のすべての共有点について,その座標を求めよ.
山梨大学 国立 山梨大学 2015年 第1問
次の問いに答えよ.

(1)$\log_{10}2=0.3010$とする.$2^{2015}$の桁数を求めよ.
(2)座標空間において,点$(a,\ 0,\ -1)$を中心とする半径$3$の球面が,$yz$平面と交わってできる円の半径が$2$のとき,$a$の値を求めよ.
(3)$y=-3x^3+9x-1$の極小値を求めよ.
(4)$\displaystyle y=2 \sin \left( \theta+\frac{\pi}{3} \right)$のグラフをかけ.ただし,$0 \leqq \theta \leqq 2\pi$とする.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)数列$\{a_n\}$の第$1$項から第$n$項までの和$S_n$が$3S_n=a_n+2n-1$を満たすならば,
\[ a_n=\frac{[ア]}{[イ]} \left( \frac{[ウ]}{[エ]} \right)^n+\frac{[オ]}{[カ]} \]
である.
(2)$t$を実数とする.座標空間において,点$(2t,\ 1,\ -t)$を通りベクトル$(-1,\ 2,\ 1)$と平行な直線を$\ell$とする.点$\mathrm{P}$の座標を$(0,\ 2,\ 0)$とする.

(i) 点$\mathrm{P}$から$\ell$に垂線$\mathrm{PH}$を下ろすとき,
\[ \mathrm{PH}^2=\frac{[キ]}{[ク]}t^2+[ケ]t+\frac{[コ]}{[サ]} \]
である.
(ii) 点$\mathrm{P}$を中心とする半径$2$の球面を$S$とする.$S$と$\ell$が異なる$2$点で交わるとき,その$2$点間の距離は$\displaystyle t=\frac{[シ]}{[ス]}$のとき最大値をとる.
首都大学東京 公立 首都大学東京 2015年 第2問
座標空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 2,\ 2)$,$\mathrm{B}(3,\ -1,\ 2)$がある.三角形$\mathrm{OAB}$の周上または内部の点$\mathrm{P}$は$\mathrm{AP}=\sqrt{2}$,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{AP}}$を満たしているとする.このとき,以下の問いに答えなさい.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)三角形$\mathrm{OBP}$の面積を求めなさい.
(3)点$\mathrm{Q}$が点$\mathrm{A}$を中心とする半径$\sqrt{2}$の球面上を動くとき,点$\mathrm{B}$から直線$\mathrm{OQ}$に引いた垂線の長さの最小値を求めなさい.
北九州市立大学 公立 北九州市立大学 2015年 第4問
原点を$\mathrm{O}$として$3$点$\mathrm{A}(0,\ 1,\ 4)$,$\mathrm{B}(1,\ -1,\ 0)$,$\mathrm{C}(-1,\ 3,\ 2)$をとる.以下の問いに答えよ.

(1)点$\mathrm{A}$から直線$\mathrm{BC}$に引いた垂線と直線$\mathrm{BC}$との交点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)線分$\mathrm{AP}$の中点を$\mathrm{Q}$とする.点$\mathrm{Q}$を中心とする半径$\mathrm{AQ}$の球面$\mathrm{S}$を考える.原点$\mathrm{O}$は球面$\mathrm{S}$の内側にあるか外側にあるかを答えよ.
(4)球面$\mathrm{S}$と線分$\mathrm{AB}$との交点のうち,点$\mathrm{A}$と異なる交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
金沢大学 国立 金沢大学 2014年 第1問
$a$を実数とする.このとき,座標空間内の球面$S:x^2+y^2+z^2=1$と直線$\ell:(x,\ y,\ z)=(2,\ -1,\ 0)+t(-1,\ a,\ a)$について,次の問いに答えよ.

(1)$S$と$\ell$が異なる$2$点で交わるような$a$の値の範囲を求めよ.
(2)$a$の値が$(1)$で求めた範囲にあるとき,$S$と$\ell$の$2$つの交点の間の距離$d$を$a$を用いて表せ.
(3)$(2)$の$d$が最大となるような実数$a$の値とそのときの$d$を求めよ.
大分大学 国立 大分大学 2014年 第2問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
大分大学 国立 大分大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
スポンサーリンク

「球面」とは・・・

 まだこのタグの説明は執筆されていません。