タグ「現在」の検索結果

1ページ目:全10問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第6問
ある人が破産したとき,すなわち,借りているお金の一部分しか返すことができなくなったとき,その人の財産(現在残っているものをお金にしたもの)の総額$A$を$n$人の債権者(お金を貸した人)にどう分配するかについて考える.債権者には債権額(貸したお金の額)の少ない順に番号が振られており,第$i$番目の債権者の債権額を$B_i$とすると,$B_i<B_{i+1} (i=1,\ \cdots,\ n-1)$が成り立っている.また,$\displaystyle B=\sum_{i=1}^n B_i$としたとき,$A<B$である.以下では$A=B$のときを含めて,第$i$番目の債権者の分配額$X_i$を,$B_i$の状況に応じて,次のルールに従って決める.


\mon[ケース$1$:] $\displaystyle A \leqq \frac{n}{2}B_1$のときは,$\displaystyle X_i=\frac{1}{n}A (i=1,\ \cdots,\ n)$とする.
\mon[ケース$2$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B-\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \leqq A \leqq \frac{1}{2}B-\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
\displaystyle\frac{1}{2}B_k+\frac{1}{n-k} \left\{ A-\frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$3$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B+\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \leqq A \leqq \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_{k}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
B_i-\displaystyle\frac{1}{2}B_k-\frac{1}{n-k} \left\{ \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k)-A \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$4$:] $\displaystyle B-\frac{n}{2}B_1 \leqq A$のときは,$\displaystyle X_i=B_i-\frac{1}{n}(B-A) (i=1,\ \cdots,\ n)$とする.


(1)$n=2,\ B_1=60,\ B_2=180$としたとき,$A$が
\[ [$85$][$86$][$87$] \leqq A \leqq [$88$][$89$][$90$] \]
の範囲ならば,$X_1=30$となる.また,$X_2$が$X_1$の$4$倍となるのは,$A$の値が$2$通りあり,小さい順に$[$91$][$92$][$93$]$と$[$94$][$95$][$96$]$の場合である.
(2)$n=3,\ B_1=60,\ B_2=90,\ B_3=180$としたとき,$A=100$ならば,$X_2=[$97$][$98$][$99$]$,$X_3=[$100$][$101$][$102$]$であり,$A=220$ならば,$X_2=[$103$][$104$][$105$]$,$X_3=[$106$][$107$][$108$]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ある村では公共サービス$\mathrm{X}$と$\mathrm{Y}$を提供している.提供された$\mathrm{X}$の量を$x$,$\mathrm{Y}$の量を$y$で表わす.技術的条件や予算の制約によって$(x,\ y)$が実現するのは$x,\ y$がつぎの不等式をみたすときである.
\[ \begin{array}{l}
x+y \leqq 200 \\
x+5y \leqq 790 \phantom{\frac{[ ]}{2}} \\
3x+4y \leqq 720 \phantom{\frac{[ ]}{2}} \\
x,\ y \geqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \]
$(x,\ y)$が実現する領域は$5$角形であり,その$5$頂点は$(0,\ 0)$,$(200,\ 0)$,$(0,\ 158)$および$\mathrm{A}([$53$][$54$][$55$],\ [$56$][$57$][$58$])$,$\mathrm{B}(80,\ [$59$][$60$][$61$])$である.

現在,一般の村民は$xy$が最大になることを望んでおり,一方,村の有力者一族は$x+10y$が最大になることを望んでいる.村長は$x$と$y$を自由に選ぶことができるが,両方の意向を尊重して
\[ \alpha xy+(1-\alpha)(x+10y) \quad (0<\alpha<1) \]
を最大化する方針をとった.
仮に,$\displaystyle \alpha=\frac{1}{3}$ならば村長の選択は$(x,\ y)=([$62$][$63$],\ [$64$][$65$][$66$])$となる.
村長は最大化のために選択すべき点を線分$\mathrm{AB}$上にとることにした.しかし,予算上端点$\mathrm{A}$も$\mathrm{B}$も選択することが認められないことがわかった.すると,$\alpha$は
\[ \frac{[$67$][$68$]}{[$69$][$70$][$71$]}<\alpha<\frac{[$72$][$73$]}{133} \]
の範囲に限定される.
兵庫県立大学 公立 兵庫県立大学 2015年 第5問
\begin{mawarikomi}{45mm}{
(図は省略)
}
図に示すように,ある円の周上に$4$つの円板$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が置かれ,円の中心には円板$\mathrm{K}$が置かれている.当初$\mathrm{A}$には$\bullet$で示される小石が置かれている.この状態から,順次サイコロを振り以下の手順で小石を移動し小石の位置取りを繰り返す.

(i) 現在$\mathrm{K}$に小石がある場合は,出た目の数にかかわらず,新たな位置取りはそのまま$\mathrm{K}$とする.
(ii) 出た目の数が$1$または$2$の場合,小石を現在の場所から$\mathrm{K}$に移動する.
(iii) 出た目の数が$3$の場合,小石を現在の場所から反時計回り,すなわち,$\mathrm{A} \to \mathrm{B} \to \mathrm{C} \to \mathrm{D} \to \mathrm{A}$の向きで,隣接する円板に移動する.
\mon[$\tokeishi$] 出た目の数が$4$以上の場合,小石を現在の場所から時計回り,すなわち,$\mathrm{A} \to \mathrm{D} \to \mathrm{C} \to \mathrm{B} \to \mathrm{A}$の向きで,隣接する円板に移動する.

\end{mawarikomi}
次の問に答えなさい.

(1)$n$回目の位置取り後,小石が$\mathrm{K}$にある確率を$k_n$と表す.$k_n$を求めなさい.
(2)偶数回位置取りを行った場合,小石は$\mathrm{K}$になければ$\mathrm{A}$または$\mathrm{C}$にあることを示しなさい.
(3)$n$回目の位置取り後,小石が$\mathrm{A}$にある確率を$a_n$と表す.$a_2$を求めなさい.また,$a_{2n+2}$を$a_{2n}$および$k_{2n}$を用いて表しなさい.
(4)$a_n$を求めなさい.
島根県立大学 公立 島根県立大学 2015年 第2問
$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$とする.このとき,次の問いに答えなさい.

(1)$3^{30}$は何桁の整数か.
(2)$3^{30}$の一の位の数字と最高位の数字を求めなさい.
(3)$\mathrm{A}$村では人口減少が続いており,毎年$2 \, \%$ずつ減少している.毎年このままの比率で人口が減少すると仮定した場合,はじめて人口が現在の半分以下になるのは何年後かを答えなさい.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle x+\frac{1}{x}=3$のとき,$\displaystyle x^2+\frac{1}{x^2}=[ア]$であり,$x^3-5x^2+7x-2=[イ]$である.
(2)定義域を$\displaystyle 0 \leqq x \leqq \frac{\pi}{3}$とするとき,$f(x)=\cos 3x+\sin 3x$の最大値は$[ウ]$であり,最小値は$[エ]$である.
(3)ある工業製品の価格が前年比で毎年$10 \;\%$ずつ下落している.現在の価格が$1000$円であるならば,$3$年後の価格は$[オ]$円となり,価格がはじめて$200$円を下回るのは$[カ]$年後である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とし,解答欄には整数値を入れよ.
(4)曲線$y=x^3+1$と直線$\ell$が点$\mathrm{A}$で接している.また,曲線$y=x^2+ax+1 (a<0)$も$\ell$と$\mathrm{A}$で接している.このとき,$a=[キ]$であり,$\ell$の方程式は$[ク]$である.
(5)定数$a$に対して,$\displaystyle \int_a^x f(t) \, dt=x^2+x-6$であるとき,$f(x)=[ケ]$,$a=[コ]$である.
大分大学 国立 大分大学 2012年 第1問
次の問いに答えよ.

(1)実数係数の二次方程式$x^2+2bx+c=0$の解を$\alpha,\ \beta$とする.この方程式が異なる2つの実数解を持たないとき,$\alpha+\beta+\alpha\beta$の最小値を求めよ.
(2)$\displaystyle \frac{5\sqrt{2}}{3}$が無理数であることを示せ.
(3)動点Pが現在$x$軸上の原点にある.コイン1個とサイコロ1個を同時に投げ,コインが表であれば点Pはサイコロの目の数だけ正の方向に進み,コインが裏であればサイコロの目にかかわらず負の方向に2だけ進む.この試行を3回続けて行ったとき,点Pが原点にある確率を求めよ.
兵庫県立大学 公立 兵庫県立大学 2012年 第3問
互いに友人である$\mathrm{A}$,$\mathrm{B}$はかつて,$10$年後の$1$月$1$日に,スリーアイランド国の空港で再会することを約束した.いよいよ今日が約束の$1$月$1$日である.$2$人は午後,自分達の住む国からスリーアイランド国の空港に各々到着する.ところが,$3$つの島から成るこの国には,各島に$1$つずつ,計$3$つの空港があり,出発の際,$2$人とも行き先をこれら$3$つの島の中から等確率で選んだため,降り立った空港で$2$人が再会できるとは限らない.再会できない場合は,$\mathrm{A}$も$\mathrm{B}$も,再会できるまで,現在自分がいる島以外の$2$島の$1$つを等確率で選び翌日その島へ移動することを繰り返す.ただし,$3$島の間の移動は各島間に毎日朝$1$便だけある飛行機によるしかなく,しかも,乗り継ぎが悪いため,島の間の移動は$1$日に$1$度しかできない.次の問に答えなさい.

(1)$1$月$1$日に$\mathrm{A}$,$\mathrm{B}$が再会する確率を求めなさい.
(2)$1$月$2$日にようやく$\mathrm{A}$,$\mathrm{B}$が再会する確率を求めなさい.
(3)$1$月$4$日の午後までに$\mathrm{A}$,$\mathrm{B}$が再会できる確率を求めなさい.
(4)$1$月$6$日の午後になっても$\mathrm{A}$,$\mathrm{B}$が再会できていない確率を求めなさい.
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
京都薬科大学 私立 京都薬科大学 2011年 第2問
あるジュースにはおまけとして$1$本につき$1$つのキャラクターグッズが付いている.キャラクターグッズは全部で$6$種類あり,現在$2$種類持っているとする.各キャラクターグッズは,同じ割合で封入されているとして,以下の$[ ]$にあてはまる数または式を記入せよ.

(1)今からカウントして,$3$種類目のキャラクターグッズを得るまでに購入するジュースの本数を$X$とする.

(i) $X=1$となる確率は$[ ]$である.
(ii) $X=2$となる確率は$[ ]$である.
(iii) $X=k$となる確率を$P(k)$とするとき,$\displaystyle \sum_{k=1}^n kP(k)=[ ]$となる.

(2)ジュースを$5$本,まとめ買いしたとする.

(i) この$5$本のおまけの中に,少なくとも$1$つは,現在持っていないキャラクターグッズが含まれる確率は$[ ]$である.
(ii) 現在持っていないキャラクターグッズを,ちょうど$1$つだけ得る確率は$[ ]$である.
(iii) 現在持っていないキャラクターグッズ$4$種類を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.$5$つのおまけの中で,$\mathrm{A}$が$2$つ$\mathrm{B}$が$1$つ,残り$2$つはすでに持っているキャラクターグッズが出る確率は$[ ]$である.
\mon[$\tokeishi$] 現在持っていないキャラクターグッズ$2$種類をちょうど$1$つずつだけ(残り$3$つはすでに持っているキャラクターグッズを)得る確率は$[ ]$である.
浜松医科大学 国立 浜松医科大学 2010年 第4問
ある感染症の対策について考える.感染症の防御のためには感染拡大の試算が必要であり,感染拡大は自然にはその感染症の感染力と,致死性によって予測される.感染経路は,飛沫,接触,飲食などいろいろあり,感染力の制御,つまり感染を広げないために,ワクチン開発はもちろんであるが,外出規制(イベントの自粛や学級閉鎖など),手洗い呼びかけ,などが有効である. \\
ここでは簡単のために,$1$つの感染症のみを考え,ある一定の集団(たとえば$1000$人程度の島)を対象とし,外部との接触,出入りがないと仮定する.最初の時点での過去感染者,未感染者,現在感染者の割合をそれぞれ$x_0,\ y_0,\ z_0$とする.現在感染者は$1$か月後にはすべて過去感染者となり,一度感染した人はもう感染しない.また幸いなことにこの感染により死者は生じず,また簡単のために他要因による死者,あるいは出生,転入出もないとする. \\
$1$か月ごとの変動を見ることとし,$i$か月後の時点の上記の割合をそれぞれ$x_i,\ y_i,\ z_i$で示す.症状は丁度$1$か月続くので,一人の人が現在感染者として数えられるのは$1$回のみである. \\
過去感染者は,それまでの過去感染者に,$1$か月前の現在感染者を足したものである.また,現在感染者は,$1$か月前の未感染者と$1$か月前の現在感染者の接触頻度と,この感染症の感染力によって決まる.接触頻度の係数を$a$,感染力の係数を$b$とすると,現在感染者の割合は$1$か月前の現在感染者の割合,未感染者の割合,$a,\ b$の$4$つをかけたもので求められる. \\
$x_0=0$,$y_0=0.9$,$z_0=0.1$として,以下の問いに答えよ.計算は小数点以下第$4$位を四捨五入して求めよ.

(1)$x_i,\ y_i,\ z_i$を,$x_{i-1},\ y_{i-1},\ z_{i-1},\ a,\ b$で表せ.
(2)$a=1,\ b=1$として,$x_1,\ y_1,\ z_1,\ x_2,\ y_2,\ z_2,\ x_3,\ y_3,\ z_3$をそれぞれ求めよ.
(3)$a=1$,感染力の係数$b$を$2$とした時の$x_1,\ x_2,\ x_3$を求めよ.
(4)手洗いの徹底や外出規制が最初からなされたとして,$a=0.5$,$b=1$とした時の,$x_1,\ x_2,\ x_3$を求め,(2),(3)の結果と共に,縦軸を過去感染者の割合,横軸を時間として,$3$つの場合の変化を同一座標上にグラフで示せ.
スポンサーリンク

「現在」とは・・・

 まだこのタグの説明は執筆されていません。