タグ「独立」の検索結果

2ページ目:全29問中11問~20問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
企業$\mathrm{X}$が$n$個の新製品を同時に開発しており,各新製品の開発に成功する確率は$\displaystyle \frac{1}{9}$である.すべての開発の結果が出た後に企業$\mathrm{X}$が存続できるための必要十分条件は,$n$個のうち$1$個以上の新製品の開発に成功していることである.ただし,各新製品の開発は独立な試行であるとする.企業$\mathrm{X}$が$n$個の新製品すべての開発に失敗する確率を$p_n$,また企業$\mathrm{X}$が存続できる確率を$q_n$とする.以下では,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.

(1)$p_n,\ q_n$をそれぞれ$n$を用いて表せ.
(2)$q_n \geqq 0.9$を満たす最小の自然数$n$を求めよ.
(3)$\displaystyle \frac{k}{1000}<q_{50}<\frac{k+1}{1000}$を満たす自然数$k$を求めよ.
京都大学 国立 京都大学 2014年 第2問
$2$つの粒子が時刻$0$において$\triangle \mathrm{ABC}$の頂点$\mathrm{A}$に位置している.これらの粒子は独立に運動し,それぞれ$1$秒ごとに隣の頂点に等確率で移動していくとする.たとえば,ある時刻で点$\mathrm{C}$にいる粒子は,その$1$秒後には点$\mathrm{A}$または点$\mathrm{B}$にそれぞれ$\displaystyle \frac{1}{2}$の確率で移動する.この$2$つの粒子が,時刻$0$の$n$秒後に同じ点にいる確率$p(n)$を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第7問
$2$つの確率変数$X,\ Y$の確率分布を同時に考えた表(同時確率分布表)が下のように与えられている.ただし,$X,\ Y$は互いに独立であり,$0<a<1$,$0<b<1$とする.このとき,次の各問いに答えよ.
(図は省略)

(1)表を完成させ,完成させた表を書け.
(2)確率変数$W=X-Y$の平均$E(W)$を求めよ.
(3)確率変数$\displaystyle Z=\frac{Y}{X}$の確率分布表を作成し,$Z$の平均$E(Z)$を求めよ.
(4)$\displaystyle E(Z)=\frac{9}{4},\ E(W)=-\frac{3}{2}$となる場合に,$Z$の分散$V(Z)$を求めよ.
埼玉大学 国立 埼玉大学 2014年 第3問
南北に平行に走る$5$本の同じ長さの線分が等間隔で並んでいる.西から順に,各線分の南の端点は,$A_0$,$B_0$,$C_0$,$D_0$,$E_0$であり,北の端点は,$A$,$B$,$C$,$D$,$E$である.各線分を$4$等分する点を,南から順に,$1$番地,$2$番地,$3$番地と呼ぶ.隣り合う線分の同じ番地同士を結ぶ線分を橋と呼ぶ.人は南の端点のいずれかをスタート地点として北へ向かって歩き始め,橋に出会わなければそのまま北へ向かって歩き続け,橋に出会えば橋で結ばれた隣の線分に渡ってその線分を北へ向かって歩く.必要ならこれを繰り返し,人は最終的に北の端点のゴール地点に到着する.$D$に家があるとする.$5$つの各スタート地点から家に到着することができるそれぞれの確率を,以下の場合に,求めなさい.

(1)同様に確からしく,$1$番地に$1$本の橋を置く場合
(2)同様に確からしく,たがいに独立に,$1$番地に$1$本,$2$番地に$1$本,$3$番地に$1$本の橋を置く場合
秋田大学 国立 秋田大学 2014年 第1問
会社員の$3$人は,月曜,火曜,水曜の三日間連続して,会社近くの$3$つの飲食店のいずれかで昼食をとる.いずれの曜日も,$3$人は互いに独立に$3$店から$1$つを無作為に選ぶ.次の問いに答えよ.

(1)月曜に次の事象が起こる確率をそれぞれ求めよ.

(i) $3$人の選ぶ店が互いにすべて異なる.
(ii) $3$人全員が同じ店を選ぶ.
(iii) $2$人は同じ店を選び,$1$人だけ別の店を選ぶ.

(2)月曜,火曜の連続した二日間で,火曜にはじめて$3$人全員が同じ店を選ぶ確率を求めよ.
(3)月曜,火曜,水曜の連続した三日間で,少なくとも$1$日は$3$人全員が同じ店を選ぶ確率を求めよ.
秋田大学 国立 秋田大学 2014年 第1問
会社員の$3$人は,月曜,火曜,水曜の三日間連続して,会社近くの$3$つの飲食店のいずれかで昼食をとる.いずれの曜日も,$3$人は互いに独立に$3$店から$1$つを無作為に選ぶ.次の問いに答えよ.

(1)月曜に次の事象が起こる確率をそれぞれ求めよ.

(i) $3$人の選ぶ店が互いにすべて異なる.
(ii) $3$人全員が同じ店を選ぶ.
(iii) $2$人は同じ店を選び,$1$人だけ別の店を選ぶ.

(2)月曜,火曜の連続した二日間で,火曜にはじめて$3$人全員が同じ店を選ぶ確率を求めよ.
(3)月曜,火曜,水曜の連続した三日間で,少なくとも$1$日は$3$人全員が同じ店を選ぶ確率を求めよ.
秋田大学 国立 秋田大学 2014年 第1問
会社員の$3$人は,月曜,火曜,水曜の三日間連続して,会社近くの$3$つの飲食店のいずれかで昼食をとる.いずれの曜日も,$3$人は互いに独立に$3$店から$1$つを無作為に選ぶ.次の問いに答えよ.

(1)月曜に次の事象が起こる確率をそれぞれ求めよ.

(i) $3$人の選ぶ店が互いにすべて異なる.
(ii) $3$人全員が同じ店を選ぶ.
(iii) $2$人は同じ店を選び,$1$人だけ別の店を選ぶ.

(2)月曜,火曜の連続した二日間で,火曜にはじめて$3$人全員が同じ店を選ぶ確率を求めよ.
(3)月曜,火曜,水曜の連続した三日間で,少なくとも$1$日は$3$人全員が同じ店を選ぶ確率を求めよ.
秋田大学 国立 秋田大学 2014年 第1問
会社員の$3$人は,月曜,火曜,水曜の三日間連続して,会社近くの$3$つの飲食店のいずれかで昼食をとる.いずれの曜日も,$3$人は互いに独立に$3$店から$1$つを無作為に選ぶ.次の問いに答えよ.

(1)月曜に次の事象が起こる確率をそれぞれ求めよ.

(i) $3$人の選ぶ店が互いにすべて異なる.
(ii) $3$人全員が同じ店を選ぶ.
(iii) $2$人は同じ店を選び,$1$人だけ別の店を選ぶ.

(2)月曜,火曜の連続した二日間で,火曜にはじめて$3$人全員が同じ店を選ぶ確率を求めよ.
(3)月曜,火曜,水曜の連続した三日間で,少なくとも$1$日は$3$人全員が同じ店を選ぶ確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の座標$1,\ 2,\ 3$で表される位置に置かれた点に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
操作$\mathrm{T}$

\mon[$(\mathrm{a})$] 点が$1$または$2$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で正の方向へ$1$だけ動かす.
\mon[$(\mathrm{b})$] 点が$3$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で負の方向へ$1$だけ動かす.

\end{screen}
以下,$n$を自然数とする.


(1)$1$の位置に置かれている点$\mathrm{A}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{A}$が$1$の位置に置かれている確率を$p_n$,$2$の位置に置かれている確率を$q_n$とすると,$p_n=[あ]$,$q_n=[い]$である.
(2)$2$の位置に置かれている点$\mathrm{B}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{B}$が$2$の位置に置かれている確率を$q_n^\prime$とすると,$q_n^\prime=[う]$である.
(3)$2$点$\mathrm{C}$,$\mathrm{D}$がともに$1$の位置に置かれているとする.はじめに$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うとし,点$\mathrm{C}$が$1$の位置を離れた次の回からは$\mathrm{O}$君が加わって,$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うのと同時に,$\mathrm{K}$君とは独立に,$\mathrm{O}$君が点$\mathrm{D}$に対し操作$\mathrm{T}$を繰り返し行うとする.

$(3-1)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がともに$2$の位置に置かれている確率を$r_n$とすると$r_1=0$,$r_2=[え]$であり,一般に$n \geqq 2$に対して$r_n=[お]$である.
$(3-2)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がどちらも$2$の位置に置かれていない確率を$s_n$とすると$s_1=[か]$である.また一般に$n \geqq 2$に対して$s_n-r_n=[き]$である.
名古屋大学 国立 名古屋大学 2013年 第1問
$3$人でジャンケンをする.各人はグー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.負けた人は脱落し,残った人で次回のジャンケンを行い(アイコのときは誰も脱落しない),勝ち残りが$1$人になるまでジャンケンを続ける.このとき各回の試行は独立とする.$3$人でジャンケンを始め,ジャンケンが$n$回目まで続いて$n$回目終了時に$2$人が残っている確率を$p_n$,$3$人が残っている確率を$q_n$とおく.

(1)$p_1,\ q_1$を求めよ.
(2)$p_n,\ q_n$がみたす漸化式を導き,$p_n,\ q_n$の一般項を求めよ.
(3)ちょうど$n$回目で$1$人の勝ち残りが決まる確率を求めよ.
スポンサーリンク

「独立」とは・・・

 まだこのタグの説明は執筆されていません。