タグ「特性方程式」の検索結果

1ページ目:全1問中1問~10問を表示)
大分大学 国立 大分大学 2010年 第3問
微分可能な関数$y=f(x)$が次の方程式を満たすとする.
\[ a_nf^{(n)}(x)+a_{n-1}f^{(n-1)}(x)+\cdots +a_1f^{(1)}(x)+a_0f(x)=0 (\text{A}) \]
ここに$n$は自然数,$a_i \ (i=0,\ 1,\ 2,\ \cdots, n)$は実数の定数で,$a_n \neq 0$である.また,$y^{(k)}=f^{(k)}(x)$は$f(x)$の$k$次導関数で$y^{(0)}=f^{(0)}(x)=f(x)$とする.(A)のような方程式を第$n$階微分方程式といい,(A)に対して$t$の$n$次方程式
\[ a_nt^n+a_{n-1}t^{n-1}+\cdots +a_1t+a_0=0 (\text{B}) \]
を(A)の特性方程式という.このとき次の問いに答えよ.

(1)特性方程式(B)の解が実数$r$であるとき,関数$y=e^{rx}$が方程式(A)を満たすことを証明せよ.
(2)$n$次方程式(B)が実数$r$を$k$重解$^{(\text{注})}$にもつとき,次の$t$に関する方程式は$r$を$k-1$重解にもつことを証明せよ.ただし,$k=2,\ 3,\ \cdots$とする.
\[ na_nt^{n-1}+(n-1)a_{n-1}t^{n-2}+\cdots +2a_2t+a_1=0 \]
(注) \quad $t$の$m$次方程式が適当な多項式$Q(t)$を用いて$(t-r)^kQ(t)=0$となるとき,$t=r$をこの方程式の$k$重解と定義する.ただし,$k=1,\ 2,\ \cdots$とする.
(3)実数の定数$r$に対して$x$の関数を$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots)$とする.このとき,$y_j^{(n)}$を$x,\ y_{j-1}^{(n-1)}$および$y_{j-1}^{(n)}$を用いて表せ.ただし,$j=1,\ 2,\ 3,\ \cdots$とする.
(4)実数$r$が$n$次方程式(B)の$k$重解であるとき$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots,\ k-1)$が微分方程式(A)を満たすことを証明せよ.ただし,$k$は自然数とする.
スポンサーリンク

「特性方程式」とは・・・

 まだこのタグの説明は執筆されていません。