タグ「焦点」の検索結果

2ページ目:全24問中11問~20問を表示)
信州大学 国立 信州大学 2014年 第3問
楕円$\displaystyle C:\frac{x^2}{4}+y^2=1$の焦点を$\mathrm{F}(a,\ 0)$,$\mathrm{F}^\prime(-a,\ 0)$とおく.ただし,$a>0$とする.また,$C$上の点$\mathrm{P}(b,\ c)$に対して,$\angle \mathrm{FPF}^\prime$の二等分線と$x$軸との交点を$\mathrm{Q}$とする.ただし,$bc \neq 0$とする.このとき,次の問に答えよ.

(1)$\mathrm{F}^\prime \mathrm{P}:\mathrm{FP}=\mathrm{F}^\prime \mathrm{Q}:\mathrm{FQ}$であることを示せ.
(2)$\displaystyle \frac{\mathrm{FQ}}{\mathrm{FP}}$の値を求めよ.
(3)直線$\mathrm{PQ}$の傾きは$\displaystyle \frac{4c}{b}$であることを示せ.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
浜松医科大学 国立 浜松医科大学 2013年 第2問
$|k|<1$または$k>1$を満たす実数$k$に対し,次の$2$次曲線$C(k)$を考える.
\[ C(k):\frac{x^2}{k+1}+\frac{y^2}{k-1}=1 \]
以下の問いに答えよ.

(1)点$(1,\ 1)$を通る曲線$C(k)$をすべて求めて,その概形をかけ.
(2)曲線$C(3)$が点$(a,\ b) \ (a>0,\ b>0)$を通るとき,$a$と$b$の間に成り立つ関係式を求めよ.またこのとき,点$(a,\ b)$を通る曲線$C(k) \ (k \neq 3)$の方程式を,$b$を用いて表し,その焦点を求めよ.
(3)(2)の$2$つの曲線$C(3)$,$C(k)$について,点$(a,\ b)$における$C(3)$,$C(k)$の接線をそれぞれ$\ell_1$,$\ell_2$とする.$\ell_1$と$\ell_2$のなす角度を求めよ.
福井大学 国立 福井大学 2013年 第4問
双曲線$\displaystyle C:\frac{x^2}{16}-\frac{y^2}{9}=1$上に点$\displaystyle \mathrm{A} \left( \frac{4}{\cos \theta},\ 3 \tan \theta \right)$,$\mathrm{B}(4,\ 0)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\mathrm{A}$における$C$の接線と$\mathrm{B}$における$C$の接線との交点を$\mathrm{D}$とし,$C$の焦点のうち$x$座標が正であるものを$\mathrm{F}$とおく.このとき,以下の問いに答えよ.

(1)$\mathrm{D}$の座標を求めよ.
(2)$\displaystyle \tan \frac{\theta}{2}=m$とおく.$\tan \angle \mathrm{DFB}$を$m$を用いて表せ.
(3)直線$\mathrm{DF}$は$\angle \mathrm{AFB}$を$2$等分することを証明せよ.
昭和大学 私立 昭和大学 2013年 第3問
次の各問に答えよ.

(1)双曲線$\displaystyle H:\frac{x^2}{16}-\frac{y^2}{9}=1$について,次の問に答えよ.

(i) 双曲線$H$の焦点の座標を求めよ.
(ii) 双曲線$H$について正の傾きをもつ漸近線の方程式を求めよ.
(iii) $(ⅱ)$で求めた漸近線と直交する直線が$H$と接するとき,その接点の座標を求めよ.

(2)不等式$9a>b,\ \log_ab>\log_ba^4+3$をすべて満たす整数$a,\ b$の値を求めよ.
(3)直線$x-y+2=0$を$\ell$とし,直線$x+y-3=0$を$m$とする.$1$次変換$f$によって,直線$\ell$は$m$に移り,また直線$m$は$\ell$に移る.このとき,次の問に答えよ.

(i) $1$次変換$f$を表す行列$A$を求めよ.
(ii) $A^{2013}$を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第3問
座標平面において次の$2$つの$2$次曲線を考える.

(1)原点$\mathrm{O}$と直線$x=-2$からの距離が等しい点の軌跡の方程式は
\[ y^2=[ア](x+[イ]) \]
である.
(2)$2$直線$\displaystyle y=\frac{3}{4}x-\frac{9}{4}$,$\displaystyle y=-\frac{3}{4}x+\frac{9}{4}$を漸近線にもち,$2$つの焦点の座標が$(-2,\ 0)$,$(8,\ 0)$である双曲線の方程式は
\[ \frac{(x-[ウ])^2}{[エ][オ]}-\frac{y^2}{[カ]}=1 \]
である.
(3)$(1)$と$(2)$の$2$つの曲線の共有点は$[キ]$個ある.
早稲田大学 私立 早稲田大学 2013年 第1問
放物線$C:y^2=4px (p>0)$の焦点$\mathrm{F}(p,\ 0)$を通る$2$直線$\ell_1$,$\ell_2$は互いに直交し,$C$と$\ell_1$は$2$点$\mathrm{P}_1$,$\mathrm{P}_2$で,$C$と$\ell_2$は$2$点$\mathrm{Q}_1$,$\mathrm{Q}_2$で交わるとする.次の問に答えよ.

(1)$\ell_1$の方程式を$x=ay+p$と置き,$\mathrm{P}_1$,$\mathrm{P}_2$の座標をそれぞれ$(x_1,\ y_1)$,$(x_2,\ y_2)$とする.$y_1+y_2$,$y_1y_2$を$a$と$p$で表せ.
(2)$\displaystyle \frac{1}{\mathrm{P}_1 \mathrm{P}_2}+\frac{1}{\mathrm{Q}_1 \mathrm{Q}_2}$は$\ell_1$,$\ell_2$のとり方によらず一定であることを示せ.
九州歯科大学 公立 九州歯科大学 2013年 第1問
次の問いに答えよ.

(1)頂点間の距離が$24$であり,焦点が$(20,\ 0)$と$(-20,\ 0)$である双曲線の方程式を求めよ.
(2)初項を$a_1=4$とする数列$\{a_n\}$と初項を$b_1=1$とする数列$\{b_n\}$に対して,$c_n=\sqrt{a_nb_n}$,$\displaystyle d_n=\sqrt{\displaystyle\frac{a_n}{b_n}}$とおく.ただし,$a_n>0$,$b_n>0$とする.数列$\{c_n\}$が公差$2$の等差数列となり,数列$\{d_n\}$が公比$3$の等比数列となるとき,$a_5$と$b_5$の値を求めよ.
(3)関数$f(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F$が
\[ f(-x)=-f(x),\quad \lim_{x \to \infty}\frac{f(x)}{x^3}=6,\quad \int_0^1 f(x) \, dx=\frac{1}{2} \]
をみたすとき,定数$A,\ B,\ C,\ D,\ E,\ F$の値を求めよ.
福岡女子大学 公立 福岡女子大学 2013年 第4問
$a \neq c$とする.座標平面上で,焦点$\mathrm{F}(0,\ c)$と準線$y=a$とから等距離にある点$(x,\ y)$の軌跡は放物線であり,その式を$x^2=4p(y-q)$とおくとき,$\displaystyle q=\frac{a+c}{2}$となる.以下の問に答えなさい.

(1)この放物線と直線$y=c$の交点は,焦点$\mathrm{F}$と準線$y=a$とから等距離にあることに着目して,$p$を$a$と$c$の式で表しなさい.
(2)$a>c>b$とする.焦点$\mathrm{F}$,準線$y=a$の放物線を$L$で表し,焦点$\mathrm{F}$,準線$y=b$の放物線を$L^\prime$で表す.$L$と$L^\prime$の交点$\mathrm{T}$の$y$座標を$a,\ b$を用いて表しなさい.
(3)$(2)$で求めた交点$\mathrm{T}$における$L$の接線と$L^\prime$の接線は,直交することを示しなさい.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
スポンサーリンク

「焦点」とは・・・

 まだこのタグの説明は執筆されていません。