タグ「無限級数の和」の検索結果

1ページ目:全5問中1問~10問を表示)
南山大学 私立 南山大学 2016年 第2問
$2$つの関数$\displaystyle f(x)=-\frac{1}{2}e^{-x}(\sin x+\cos x)$,$g(x)=e^{-x} \sin x$を考える.

(1)$f(x)$を微分せよ.
(2)定積分
\[ S_1=\int_0^{2\pi} |g(x)| \, dx \]
を求めよ.
(3)$n$を自然数とする.
\[ S_n=\int_{2(n-1) \pi}^{2n \pi} |g(x)| \, dx \]
とするとき,$\displaystyle \frac{S_{n+1}}{S_n}$を求めよ.
(4)無限級数の和
\[ \sum_{n=1}^{\infty} S_n \]
を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
自然数$n$に対して,$0$以上の実数を定義域とする$x$の関数$R_n(x)$を
\[ R_n(x)=\frac{1}{1+x^p}-\sum_{k=0}^{n-1}(-x^p)^k \]
とする.ただし,$p$は正の定数である.以下の問いに答えよ.

(1)次の不等式を示せ.
\[ |\int_0^1 R_n(x) \, dx|<\frac{1}{pn+1} \]
(2)次の等式を示せ.
\[ \int_0^1 \frac{dx}{1+x^p}=\sum_{k=0}^\infty \frac{(-1)^k}{pk+1} \]
(3)以上の結果を利用して次の無限級数の和を求めよ.

(i) $\displaystyle S_1=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$

(ii) $\displaystyle S_2=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$
福岡教育大学 国立 福岡教育大学 2012年 第4問
次の問いに答えよ.

(1)無限級数
\[ 1+\frac{1}{1+e^x}+\frac{1}{(1+e^x)^2}+\cdots +\frac{1}{(1+e^x)^n}+\cdots \]
はすべての実数$x$について収束することを示し,その和を求めよ.ただし,$e$は自然対数の底とする.
(2)$(1)$で求めた無限級数の和を$f(x)$とする.方程式$\log f(x)=x$を解け.ただし,対数は自然対数とする.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
スポンサーリンク

「無限級数の和」とは・・・

 まだこのタグの説明は執筆されていません。