タグ「無関係」の検索結果

1ページ目:全9問中1問~10問を表示)
名古屋市立大学 公立 名古屋市立大学 2016年 第4問
自然数$k$に対して,関数$f_k(x)=-3x^2-2x+a_k$を考える.ただし,$a_k$は$x$に無関係な数列で$a_1=2$とする.関係式$\displaystyle \int_0^{k+1} f_{k+1}(x) \, dx=\int_0^k f_k(x) \, dx-k^2-k$が満たされるとき,次の問いに答えよ.

(1)$a_k$と$a_{k+1}$との関係式を求めよ.
(2)$a_k$を$k$の式で表せ.
(3)$\displaystyle \sum_{k=1}^n \int_0^k f_k(x) \, dx$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2016年 第3問
自然数$k$に対して,関数$f_k(x)=-3x^2-2x+a_k$を考える.ただし,$a_k$は$x$に無関係な数列で$a_1=2$とする.関係式$\displaystyle \int_0^{k+1} f_{k+1}(x) \, dx=\int_0^k f_k(x) \, dx-k^2-k$が満たされるとき,次の問いに答えよ.

(1)$a_k$と$a_{k+1}$との関係式を求めよ.
(2)$a_k$を$k$の式で表せ.
(3)$\displaystyle \sum_{k=1}^n \int_0^k f_k(x) \, dx$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2016年 第4問
自然数$k$に対して,関数$f_k(x)=-3x^2-2x+a_k$を考える.ただし,$a_k$は$x$に無関係な数列で$a_1=2$とする.関係式$\displaystyle \int_0^{k+1} f_{k+1}(x) \, dx=\int_0^k f_k(x) \, dx-k^2-k$が満たされるとき,次の問いに答えよ.

(1)$a_k$と$a_{k+1}$との関係式を求めよ.
(2)$a_k$を$k$の式で表せ.
(3)$\displaystyle \sum_{k=1}^n \int_0^k f_k(x) \, dx$を求めよ.
津田塾大学 私立 津田塾大学 2014年 第2問
放物線$C_1:y=x^2$と放物線$C_2:y=-(x-a)^2+b$が点$\mathrm{P}(t,\ t^2) (t>0)$において接している.

(1)$a$と$b$を$t$を用いて表せ.
(2)曲線$C_2$と$x$軸との交点のうち,$x$座標の小さい点を$\mathrm{Q}$とし,原点を$\mathrm{O}$とする.$C_1$と$C_2$と線分$\mathrm{OQ}$で囲まれた部分の面積を$S_1$とし,$C_2$と線分$\mathrm{OQ}$と$y$軸で囲まれた部分の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$は$t$に無関係な値であることを示せ.
横浜市立大学 公立 横浜市立大学 2014年 第4問
$n$を$4$以上の整数とする.$1$番から$n$番までの番号がふられたボールが$1$つずつある.このとき,以下の問いに答えよ.

(1)以下のような操作でボールを$1$列に並べる:

(i) $1$番のボールを適当な位置におく.
(ii) $2$番のボールを$1$番のボールの左または右に同じ確率でおく.
(iii) $3$番のボールをすでに並んでいる$2$つのボールの左または間または右に同じ確率でおく.
\mon[$\tokeishi$] 以下$n$番まで番号順に,$k$番のボールを,すでに並んでいるボールの一番左または間または一番右に同じ確率でおく,ことを繰り返す.

例えば,左から$2$番,$1$番,$3$番のボールが並んでいるとき,$4$番のボールが$2$番と$1$番の間におかれる確率は$\displaystyle \frac{1}{4}$である.
$n$番のボールをおき終えたとき,$i$番のボールが左から$j$番目に並ぶ確率は$\displaystyle \frac{1}{n}$であることを証明せよ.ただし,$i$と$j$は$1$以上,$n$以下の整数とする.
(2)$(1)$のボールの列を,(左から)番号順に並び替えるため,以下の操作を考える:
隣り合った$2$つのボールの組で,左のボールの番号が右のそれより大きなもの(入れ替え可能な組と呼ぶ)が存在するとき,そのようなボールの組を$1$つ選び,入れ替える.
入れ替え可能な組が複数あった場合に,入れ替える組をどのように選んだとしても,この操作を繰り返すことにより,すべてのボールの列は,必ず番号順の列になることを証明せよ.
(3)$(2)$の操作の回数は,入れ替える組の選び方とは無関係であることを証明せよ.
(4)$(2)$においてボールの列を番号順に並べ替えるとき,$i$番のボールを,より番号の小さいボールと入れ替える回数の期待値を$E_i$とする.このとき,
\[ \sum_{i=1}^n E_i \]
を求めよ.
山梨大学 国立 山梨大学 2012年 第2問
$a$を定数,$h$を正の定数とし,放物線$C:y=x^2$と直線$x=a$との交点を$\mathrm{P}$,放物線$C$と直線$x=a+h$との交点を$\mathrm{Q}$とする.また,直線$\mathrm{PQ}$に平行で放物線$C$に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と直線$x=a$との交点を$\mathrm{R}$,直線$\ell$と直線$x=a+h$との交点を$\mathrm{S}$とする.直線$\mathrm{PQ}$と放物線$C$に囲まれた図形の面積を$A_1$,四角形$\mathrm{PRSQ}$の面積を$A_2$としたとき,$\displaystyle \frac{A_1}{A_2}$の値は$a$と$h$に無関係に一定となることを示せ.
東京海洋大学 国立 東京海洋大学 2012年 第5問
空間内に三角形$\mathrm{ABC}$と定点$\mathrm{O}$を中心とする半径$1$の球面$S$とがある.点$\mathrm{P}$が$S$上のすべての点を動くときの$\mathrm{AP}^2+\mathrm{BP}^2+\mathrm{CP}^2$の最大値,最小値をそれぞれ$M,\ m$とするとき,次の問に答えよ.ただし,三角形$\mathrm{ABC}$の重心$\mathrm{G}$は$\mathrm{OG}>1$をみたすものとする.

(1)$M=\mathrm{AQ}^2+\mathrm{BQ}^2+\mathrm{CQ}^2$となる$S$上の点を$\mathrm{Q}$,$m=\mathrm{AR}^2+\mathrm{BR}^2+\mathrm{CR}^2$となる$S$上の点を$\mathrm{R}$とするとき,$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{G}$は$1$直線上にあることを示せ.
(2)$\sqrt{M-(\mathrm{GA}^2+\mathrm{GB}^2+\mathrm{GC}^2)}-\sqrt{m-(\mathrm{GA}^2+\mathrm{GB}^2+\mathrm{GC}^2)}$の値は三角形$\mathrm{ABC}$に無関係に定まることを示し,その値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第2問
定数$a$,関数$f(x)$,および数列$\{x_n\}$を次のように定める.
\begin{eqnarray}
& & 1<a<2,\quad f(x)=\frac{1}{2}(3x^2-x^3) \nonumber \\
& & x_1=a,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}

(1)関数$f(x)$の増減を調べよ.
(2)すべての自然数$n$に対して$1<x_n<2$を示せ.
(3)すべての自然数$n$に対して$x_{n+1}>x_n$を示せ.
(4)次の不等式を満たす$n$に無関係な定数$b \ (0<b<1)$があることを示せ.
\[ 2-x_{n+1} \leqq b(2-x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)数列$\{x_n\}$が収束することを示し,その極限値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第4問
座標平面上の原点O$(0,\ 0)$,点A$(1,\ 0)$,点B$(1,\ 1)$,点C$(0,\ 1)$および点P$(a,\ b)$に対して,点Pを原点のまわりに$90^\circ$回転した点をQ,点Qを点Aのまわりに$90^\circ$回転した点をR,点Rを点Bのまわりに$90^\circ$回転した点をS,また点Pを点Cのまわりに$-90^\circ$回転した点をUとする.このとき,以下の問に答えよ.

(1)点Rの座標を求めよ.
(2)点Uの座標を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{US}}$は$a,\ b$に無関係であることを示せ.
(4)3点B,R,Uが一直線上にあるための必要十分条件を求めよ.ただし,2点あるいは3点が重なっている場合も,3点は一直線上にあるものとする.
スポンサーリンク

「無関係」とは・・・

 まだこのタグの説明は執筆されていません。