タグ「無作為」の検索結果

6ページ目:全105問中51問~60問を表示)
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
秋田大学 国立 秋田大学 2014年 第1問
会社員の$3$人は,月曜,火曜,水曜の三日間連続して,会社近くの$3$つの飲食店のいずれかで昼食をとる.いずれの曜日も,$3$人は互いに独立に$3$店から$1$つを無作為に選ぶ.次の問いに答えよ.

(1)月曜に次の事象が起こる確率をそれぞれ求めよ.

(i) $3$人の選ぶ店が互いにすべて異なる.
(ii) $3$人全員が同じ店を選ぶ.
(iii) $2$人は同じ店を選び,$1$人だけ別の店を選ぶ.

(2)月曜,火曜の連続した二日間で,火曜にはじめて$3$人全員が同じ店を選ぶ確率を求めよ.
(3)月曜,火曜,水曜の連続した三日間で,少なくとも$1$日は$3$人全員が同じ店を選ぶ確率を求めよ.
秋田大学 国立 秋田大学 2014年 第1問
会社員の$3$人は,月曜,火曜,水曜の三日間連続して,会社近くの$3$つの飲食店のいずれかで昼食をとる.いずれの曜日も,$3$人は互いに独立に$3$店から$1$つを無作為に選ぶ.次の問いに答えよ.

(1)月曜に次の事象が起こる確率をそれぞれ求めよ.

(i) $3$人の選ぶ店が互いにすべて異なる.
(ii) $3$人全員が同じ店を選ぶ.
(iii) $2$人は同じ店を選び,$1$人だけ別の店を選ぶ.

(2)月曜,火曜の連続した二日間で,火曜にはじめて$3$人全員が同じ店を選ぶ確率を求めよ.
(3)月曜,火曜,水曜の連続した三日間で,少なくとも$1$日は$3$人全員が同じ店を選ぶ確率を求めよ.
昭和大学 私立 昭和大学 2014年 第5問
赤,青,黄色$3$色のカードがそれぞれ$5$枚ずつあり,各色のカードに$1$から$5$までの数字が$1$つずつ書かれている.これら$15$枚のカードから無作為に$3$枚を同時に取り出すとき,以下の各問いに答えよ.

(1)取り出し方の総数を求めよ.ただし,カードの色も数字も区別する.
(2)$3$枚とも同じ数字となる確率を求めよ.
(3)$3$枚のカードのうち,青いカードが$1$枚だけとなる確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
次の$[ ]$にあてはまる最も適当な数を解答欄に記入しなさい.

それぞれ$\mathrm{K}$,$\mathrm{E}$,$\mathrm{I}$,$\mathrm{O}$という文字の書かれた$4$枚のカードがある.その中から無作為に$1$枚のカードを取り出し,文字を確認してからカードを元に戻すことを$4$回繰り返す.

(1)$1$回目と$2$回目に取り出すカードの文字が異なる確率は$[タ]$である.
(2)$3$回目までに取り出すカードの文字がすべて異なる確率は$[チ]$である.
(3)$4$回目までに,$\mathrm{K}$と書かれたカードを$2$回,$\mathrm{O}$と書かれたカードを$2$回取り出す確率は$[ツ]$である.
(4)$4$回目までに取り出すカードの文字が$2$種類である確率は$[テ]$である.
(5)$4$回目までに取り出したカードの文字が$X$種類であるとするとき,$X$の期待値は$[ト]$である.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
上智大学 私立 上智大学 2014年 第3問
$1$から$10$までの数字を$1$つずつ書いた$10$枚のカードを数字の小さい順に左から右に並べる.この中から$3$枚を無作為に選び,いずれのカードも元の位置と異なる位置に置くという操作を考える.この操作を$2$回以上続けて行う場合,$2$回目以降はカードの並びを一番最初の状態に戻すことはせず,$1$回前の操作で置き換えられた状態から$3$枚を無作為に選ぶ.また,選んだ$3$枚のカードについて元の位置と異なる位置への置き方が複数あるとき,いずれの置き方も等しい確率で選ばれるものとする.置き換えの操作を$n$回続けて行ったとき,一番左のカードが$10$である確率を$P_n$で表す.

(1)$\displaystyle P_1=\frac{[ハ]}{[ヒ]}$である.
(2)$n$回の操作の後で一番左のカードが$10$であり,$(n+1)$回目の操作の後も一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[フ]}{[ヘ]}P_n$となる.
(3)$n$回の操作の後で一番左のカードが$10$ではなく,$(n+1)$回目の操作の後で一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[ホ]P_n+[マ]}{[ミ]}$となる.
(4)$P_{n+1}$を$P_n$の式で表すと
\[ P_{n+1}=\frac{[ム]}{[メ]}P_n+\frac{[モ]}{[ヤ]} \]
となる.
(5)$\displaystyle P_n=\frac{[ユ]}{[ヨ]} \left( \frac{[ラ]}{[リ]} \right)^n+\frac{[ル]}{[レ]}$である.
西南学院大学 私立 西南学院大学 2014年 第2問
両面が赤色のカードが$3$枚,片方の面が赤,もう片方の面が青のカードが$3$枚,片方の面が赤,もう片方の面が黄色のカードが$4$枚ある.この$10$枚のカードを袋に入れ,無作為に$1$枚を取り出しテーブルの上に置いたとき,以下の問に答えよ.ただし,カードをテーブルの上に置いたとき,見えている面をカードの表とする.


(1)カードの表が赤である確率は,$\displaystyle \frac{[サシ]}{[スセ]}$である.

(2)カードの表が赤であるとき,裏も赤である確率は,$\displaystyle \frac{[ソ]}{[タチ]}$である.

(3)カードの表が赤であるとき,裏が黄色でない確率は,$\displaystyle \frac{[ツ]}{[テト]}$である.
名古屋市立大学 公立 名古屋市立大学 2014年 第3問
円周上に等間隔に$n$個($n \geqq 4$)の点が配置されている.これらの点から異なる$3$点を無作為に選び出し,それらを頂点とする三角形をつくる.次の問いに答えよ.

(1)$n=8$のとき,三角形が直角三角形になる確率を求めよ.
(2)$n$が偶数であるとき,三角形が直角三角形になる確率を$n$の式で表せ.
(3)$n=12$のとき,三角形が鈍角三角形になる確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第3問
円周上に等間隔に$n$個($n \geqq 4$)の点が配置されている.これらの点から異なる$3$点を無作為に選び出し,それらを頂点とする三角形をつくる.次の問いに答えよ.

(1)$n=8$のとき,三角形が直角三角形になる確率を求めよ.
(2)$n$が偶数であるとき,三角形が直角三角形になる確率を$n$の式で表せ.
(3)$n=12$のとき,三角形が鈍角三角形になる確率を求めよ.
スポンサーリンク

「無作為」とは・・・

 まだこのタグの説明は執筆されていません。