タグ「点線」の検索結果

1ページ目:全10問中1問~10問を表示)
津田塾大学 私立 津田塾大学 2016年 第2問
$1$辺の長さが$L \, \mathrm{cm}$の正六角形から図のように斜線部を取り除き,点線にそって${90}^\circ$折り曲げて,底面と側面だけからなる正六角柱の容器を作る.この容器の容積の最大値を求めよ.
(図は省略)
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
京都教育大学 国立 京都教育大学 2014年 第5問
幅$30 \, \mathrm{cm}$の長方形の金属板を,図$1$の点線で折り曲げて雨どいを作る.図$2$は折り曲げた金属板のどの面にも垂直な平面による断面である.また,$\mathrm{AB}$,$\mathrm{CP}$は水平面に垂直,$\mathrm{AC}$は水平で,$\mathrm{AB}$の長さは$10 \, \mathrm{cm}$であるとする.$\mathrm{CP}$の長さを$x \, \mathrm{cm} (0<x<10)$,雨どいの上記平面による断面積(水が流れることのできる部分の断面積)を$S \, \mathrm{cm}^2$とするとき,次の問に答えよ.ただし,金属板の厚みは無視する.

(1)$S$を$x$で表せ.
(2)$S^2$を考えて,$S$の最大値とそのときの$x$の値を求めよ.
(図は省略)
高知大学 国立 高知大学 2013年 第2問
座標平面において,点$\mathrm{P}_0$を原点として,点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\cdots$を \\
下図のようにとっていく(点線は$x$軸と平行).ただし, \\
$\displaystyle \mathrm{P}_{n-1} \mathrm{P}_n=\frac{1}{2^{n-1}} \ (n \geqq 1),\ 0<\theta<\frac{\pi}{2}$とする.このとき, \\
次の問いに答えよ.
\img{674_2898_2013_1}{25}


(1)$\mathrm{P}_0 \mathrm{P}_1+\mathrm{P}_1 \mathrm{P}_2+\cdots +\mathrm{P}_{n-1} \mathrm{P}_n+\cdots$を求めよ.
(2)$\mathrm{P}_n$の座標を$n$と$\theta$を用いて表せ.
(3)$n$を限りなく大きくするとき,点$\mathrm{P}_n$はどのような点に近づくか,その点の座標を求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第2問
図のような縦横同数の格子の全ての格子点上に,白または黒の石を置く.縦または横に隣り合う石の色が同じならその間に実線を,異なっていれば点線を引き,実線の数を数える操作を行う.図$1$の実線の数は$2$本,図$2$では$5$本である.
(図は省略)

(1)$2 \times 2$の格子点に$4$つの石を置くとき,石の置き方にかかわらず,実線の数は偶数になることを示せ.
(2)$3 \times 3$の格子点に$9$つの石を置くとき,実線の数が奇数になるための必要十分条件を示せ.ただし,(1)の結果を使ってもよい.
兵庫県立大学 公立 兵庫県立大学 2011年 第5問
実数$x$に対して,$n \leqq x<n+1$を満たす整数$n$を$[x]$と書く. \\
以下の問に答えなさい.
\img{562_2720_2011_1}{15}


(1)$2$つの等式$[x]=1,\ [y]=1$が表す領域を図示しなさい.
補足:$2$つの等式$[x]=1,\ [y]=1$が表す領域とは,$[x]=1$ \\
および$[y]=1$を同時に満たす点$(x,\ y)$の全体のことである.
(2)等式$[y]=[x]$が表す領域を図示しなさい.
(3)右の図の斜線で示された領域$A$を表す等式を求めなさい.ただし,領域$A$には,斜線部分の境界上の点線で示された部分および白丸で表された点は含まれない.
スポンサーリンク

「点線」とは・・・

 まだこのタグの説明は執筆されていません。