タグ「漸化式」の検索結果

8ページ目:全503問中71問~80問を表示)
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
横浜市立大学 公立 横浜市立大学 2016年 第1問
以下の問いに答えよ.

(1)ある大学で$N$人の学生が数学を受験した.その得点を$x_1,\ x_2,\ \cdots,\ x_N$とする.平均値$\overline{x}$および分散$s^2$は各々

$\displaystyle \overline{x}=\frac{x_1+x_2+\cdots +x_N}{N}$
$\displaystyle s^2=\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\cdots +(x_N-\overline{x})^2}{N}$

で与えられる.標準偏差$s (>0)$は
\[ s=\sqrt{s^2} \]
となる.このとき$x$点を取った学生の{\bf 偏差値}は
\[ t=50+10 \times \frac{x-\overline{x}}{s} \]
で与えられる($x \in \{x_1,\ x_2,\ \cdots,\ x_N\}$).偏差値は{\bf 無単位}であることに注意せよ.
$\mathrm{Y}$大学で$N=3n$人の学生が数学を受験し,たまたま$2n$人の学生が$a$点,残りの$n$人の学生が$b$点を取ったとしよう.簡単にするために$a<b$とする.$a$点を取った学生および$b$点を取った学生の偏差値を求めよ.
(2)方程式
\[ x^2-3y^2=13 \]
の整数解を求める.簡単にするために$x>0,\ y>0$とする.まず
\[ X=ax+by,\quad Y=cx+dy \]
とおく.$a,\ b,\ c,\ d$を自然数として,$(X,\ Y)$が再び方程式
\[ X^2-3Y^2=13 \]
を満たすための組$(a,\ b,\ c,\ d)$を$1$つ求めよ.
次に,解の組$(x,\ y)$で$x>500$となる$(x,\ y)$を$1$つ求めよ.
(3)$n$を自然数とする.漸化式

$a_{n+2}-5a_{n+1}+6a_n-6n=0$
$a_1=1,\ a_2=1$

で定められる数列$\{a_n\}$の一般項を求めよ.
(4)$n$を$0$以上の整数とする.以下の不定積分を求めよ.
\[ \int \left\{ -\frac{(\log x)^n}{x^2} \right\} \, dx=\sum_{k=0}^n [ ] \]
ただし,積分定数は書かなくてよい.
首都大学東京 公立 首都大学東京 2016年 第1問
$a$と$b$を$0 \leqq a \leqq 1$,$0 \leqq b<1$をみたす定数とする.数列$\{a_n\}$を次の条件によって定める.
\[ a_1=a,\quad a_{n+1}=\frac{1}{2}({a_n}^2+b) \quad (n=1,\ 2,\ 3,\ \cdots) \]
$c=1-\sqrt{1-b}$とおく.以下の問いに答えなさい.

(1)$0 \leqq a_n \leqq 1$が成り立つことを示しなさい.
(2)$\displaystyle a_{n+1}-c=\frac{1}{2}(a_n+c)(a_n-c)$が成り立つことを示しなさい.
(3)$\displaystyle \lim_{n \to \infty}a_n=c$が成り立つことを示しなさい.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第4問
数列$\{a_n\}$が以下の漸化式をみたすとする.
\[ a_1=-4,\quad a_{n+1}=\frac{1}{2}a_n+\frac{3}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
また,実数$x$の多項式$P_n(x)$を
\[ P_n(x)=a_1x+\cdots +a_nx^n \]
で定める.このとき,以下の問いに答えよ.

(1)$\{a_n\}$の一般項を求めよ.
(2)$P_n(x)$を$x-1$で割ったときの余りを求めよ.
(3)$P_n(x)$を$x-4$で割ったときの余りが$-24$になるように,$n$の値を定めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2016年 第3問
自然数の数列$\{a_n\}$を次のように定める.
\[ a_1=1,\quad a_2=1,\quad a_{n+2}=a_{n+1}+6a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の問いに答えよ.

(1)自然数$n$に対し,$a_{n+2}-pa_{n+1}=q(a_{n+1}-pa_n)$をみたすような数$p,\ q$を求めることにより,数列$\{a_n\}$の一般項を求めよ.
(2)自然数$m,\ n$に対し,$a_{m+n+1}=a_{m+1}a_{n+1}+6a_ma_n$が成り立つことを証明せよ.
(3)自然数$m,\ n$に対し,$m$が$n$で割り切れるとき,$a_m$は$a_n$で割り切れることを証明せよ.
(4)$a_{12}$を素因数分解せよ.
奈良県立医科大学 公立 奈良県立医科大学 2016年 第7問
$\displaystyle a_1=\frac{1}{2},\ a_{n+1}=\frac{a_n}{2-a_n}$で与えられる数列$\{a_n\}$の$a_{11}$を求めよ.
京都府立大学 公立 京都府立大学 2016年 第2問
$2$つの数列$\{a_n\}$,$\{b_n\}$を

$a_1=1,\quad b_1=0,\quad a_2=0,\quad b_2=1$
$a_{n+2}=2a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots)$
$b_{n+2}=2b_{n+1}+b_n \quad (n=1,\ 2,\ 3,\ \cdots)$

で定める.関数$\displaystyle f(x)=\frac{1}{2+x}$に対し,関数$g_n(x) (n=1,\ 2,\ 3,\ \cdots)$を

$g_1(x)=f(x)$
$g_{n+1}(x)=g_n(f(x)) \quad (n=1,\ 2,\ 3,\ \cdots)$

で定める.以下の問いに答えよ.

(1)$a_{n+2}=b_{n+1} (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.
(2)$\displaystyle g_n(0)=\frac{a_{n+2}}{b_{n+2}} (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.
(3)数列$\{c_n\}$を$c_n=g_n(0) (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$\displaystyle \lim_{n \to \infty} c_n$を求めよ.
札幌医科大学 公立 札幌医科大学 2016年 第1問
次の問に答えよ.

(1)空間上の$3$点を$\mathrm{A}(0,\ 1,\ 3)$,$\mathrm{B}(-1,\ 3,\ 2)$,$\mathrm{C}(1,\ 2,\ -1)$とする.この$3$点を通る平面上に$\mathrm{D}(a,\ b,\ -1)$があるとき,$a$と$b$の関係式を求めよ.
(2)数列$\{a_n\}$は
\[ a_1=a>0,\quad a_{n+1}=16{a_n}^3 \quad (n=1,\ 2,\ \cdots) \]
をみたすものとする.

(i) 数列$\{b_n\}$を$b_n=\log_2 a_n$とするとき,$\{b_n\}$の一般項を$a$と$n$を用いて表せ.
(ii) 数列$\{a_n\}$の一般項を$a$と$n$を用いて表せ.
(iii) すべての$n$について$a_n=a$をみたすような$a$の値を求めよ.

(3)複素数平面において,等式$2 |z-4|=3 |z-3i|$をみたす点$z$の全体はどのような図形を表すか.ただし$i$は虚数単位とする.
埼玉大学 国立 埼玉大学 2015年 第3問
数列$\{a_n\}$は初項が$4$で,$A,\ B$をある定数として
\[ a_{n+1}=\frac{Aa_n+B}{a_n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で与えられている.数列$\{b_n\}$は等比数列であり,関係式
\[ a_nb_n-a_n+b_n+3=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.このとき下記の設問に答えよ.

(1)$A,\ B$を求めよ.
(2)数列$\{b_n\}$の一般項を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
スポンサーリンク

「漸化式」とは・・・

 まだこのタグの説明は執筆されていません。