タグ「漸化式」の検索結果

7ページ目:全503問中61問~70問を表示)
立教大学 私立 立教大学 2016年 第3問
次の条件を満たす実数の数列$\{a_n\},\ \{b_n\}$を考える.
\[ a_1=1,\quad b_1=0,\quad \left\{ \begin{array}{l}
a_{n+1}=\displaystyle\frac{1}{2}(a_n-b_n) \!\!\!\!\!\!\!\!\phantom{\displaystyle\frac{\mkakko{}}{\mkakko{}}} \\
b_{n+1}=\displaystyle\frac{1}{2}(a_n+b_n) \!\!\!\!\!\!\!\!\phantom{\displaystyle\frac{\mkakko{}}{\mkakko{}}}
\end{array} \right. (n=1,\ 2,\ 3,\ \cdots) \]
また,$i$を虚数単位とし,複素数$z_n$を$z_n=a_n+b_n i$とする.このとき,次の問いに答えよ.

(1)$z_{n+1}=\alpha z_n$となる複素数$\alpha$を求めよ.
(2)$(1)$で求めた複素数$\alpha$を極形式で$\alpha=r(\cos \theta+i \sin \theta)$と表すとき,$r$と$\theta$を求めよ.ただし,$0 \leqq \theta<2\pi$とする.
(3)$n \geqq 1$に対して,$z_n$を極形式で$z_n=r_n(\cos \theta_n+i \sin \theta_n)$と表すとき,$r_n$と$\theta_n$を$n$を用いて表せ.ただし,$\theta_n \geqq 0$とする.
(4)$a_1+a_2+a_3+a_4$を求めよ.
(5)$N$を自然数とするとき,$\displaystyle \sum_{n=1}^{4N} a_n$を$N$を用いて表せ.
同志社大学 私立 同志社大学 2016年 第4問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{a_n}{2}+\frac{6}{\sqrt{a_n}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\displaystyle f(x)=\frac{x}{2}+\frac{6}{\sqrt{x}} (x>0)$として,次の問いに答えよ.

(1)閉区間$4 \leqq x \leqq 9$において,$f(x)$の最大値と最小値,導関数$f^\prime(x)$の最大値と最小値をそれぞれ求めよ.
(2)$4<a_n<9$を数学的帰納法を用いて示せ.
(3)$c=f(c)$を満たす正の実数$c$を求めよ.
(4)上の$(3)$で決定した$c$に対して,$\displaystyle 0<c-a_{n+1}<\frac{c-a_n}{2} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(5)極限値$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
同志社大学 私立 同志社大学 2016年 第2問
数列$\{a_n\}$を漸化式
\[ a_1=-1,\quad a_{n+1}=a_n-3n+\frac{1}{2^{n-1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.第$n$項$a_n$に対して,$a_n$を超えない最大の整数を$b_n$,また$c_n$を$c_n=a_n-b_n$より定める.ここで実数$x$に対し$x$を超えない最大の整数とは,$N \leqq x<N+1$を満たす整数$N$とする.このとき次の問いに答えよ.

(1)$a_2,\ a_3,\ b_2,\ b_3$の値をそれぞれ求めよ.
(2)数列$\{a_n\}$の一般項$a_n$を$n$を用いて表せ.
(3)$n \geqq 3$のとき,数列$\{b_n\}$,$\{c_n\}$の一般項をそれぞれ$n$を用いて表せ.
(4)正の整数$n$に対して,数列$\{d_n\}$を$\displaystyle d_n=\sum_{k=1}^n b_kc_k$で定める.数列$\{d_n\}$の第$n$項を$n$を用いて表せ.
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
金沢工業大学 私立 金沢工業大学 2016年 第2問
条件$a_1=5$,$\displaystyle a_{n+1}=\frac{n}{n+1}a_n+9n (n=1,\ 2,\ 3,\ \cdots)$によって定まる数列$\{a_n\}$を考え,$b_n=na_n$とおく.

(1)$b_1=[ア]$,$b_2=[イウ]$である.
(2)$b_{n+1}-b_n=[エ]n(n+1)$である.
(3)$b_{n+1}=[オ]n(n+1)(n+2)+[カ]$である.

(4)$\displaystyle a_n=[キ]n^2-[ク]+\frac{[ケ]}{n}$である.
大阪歯科大学 私立 大阪歯科大学 2016年 第1問
次の各問の$[ ]$にあてはまる数または式を記入しなさい.

(1)$2016$の約数($1$と$2016$も含める)の個数は$[ ]$である.
(2)一般項が$a_{n+1}=2a_n$(ただし,$a_1=1$)で表される数列の第$n$項までの和は$[ ]$である.
(3)$2^{28}$の桁数は$[ ]$である.ただし,$0.3010<\log_{10}2<0.3011$である.
(4)方程式$2 \cos \theta+\sin \theta=1$の$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$における解$\theta$に対して$\tan \theta=[ ]$である.
龍谷大学 私立 龍谷大学 2016年 第2問
次の条件によって定められる数列$\{a_n\}$を考える.
\[ a_1=1,\quad a_2=0,\quad a_{n+2}-a_n=3 \quad (n=1,\ 2,\ 3,\ \cdots) \]
また,$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$とおく.

(1)$b_1$を求めなさい.また,$b_{n+1}$を$b_n$で表しなさい.
(2)数列$\{b_n\}$の一般項を求めなさい.
(3)数列$\{a_n\}$の一般項を求めなさい.
中京大学 私立 中京大学 2016年 第5問
条件$\displaystyle a_1=\frac{2}{5}$,$\displaystyle \frac{1}{a_{n+1}}-\frac{1}{a_n}=\frac{2n+7}{6} (n=1,\ 2,\ 3,\ \cdots)$で定められる数列$\{a_n\}$がある.このとき,$\displaystyle a_n=\frac{[ア]}{n^2+[イ]n+[ウ]}$であり,$\displaystyle \sum_{n=1}^{16} a_n=\frac{[エ][オ][カ]}{[キ][ク]}$である.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.

(1)方程式$\log_2 (5-x)=\log_8 (x^2-15)$を解くと$[ ]$である.また,変数$a,\ b$が$\log_9 a=(\log_3 b)^2$をみたすとき$\displaystyle \left( \frac{a}{b} \right)^8$の最小値は$[ ]$である.
(2)$a_1=-30$,$a_{n+1}-a_n=-2n+18$で定められる数列$\{a_n\}$について,$a_n>0$である$n$の個数を求めると$[ ]$であり,$\displaystyle S_n=\sum_{k=1}^n a_k$の最大値を求めると$[ ]$である.
千葉工業大学 私立 千葉工業大学 2016年 第4問
$x$の$2$次関数$f_1(x),\ f_2(x),\ \cdots,\ f_n(x),\ \cdots$を条件

$f_1(x)=x^2-5x,$

$\displaystyle f_{n+1}(x)=x^2 \int_0^2 \{ t{f_n}^\prime(t)-f_n(t) \} \, dt+x \int_0^2 f_n(t) \, dt \quad (n=1,\ 2,\ 3,\ \cdots)$

により定める.さらに,数列$\{a_n\}$,$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を
\[ f_n(x)=a_nx^2+b_nx \]
により定める.このとき,次の問いに答えよ.

(1)${f_n}^\prime(x)=[ア]a_nx+b_n$であり,数列$\{a_n\}$,$\{b_n\}$は
\[ a_{n+1}=\frac{[イ]}{[ウ]}a_n,\quad b_{n+1}=\frac{[エ]}{[オ]}a_n+[カ]b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.
(2)$\displaystyle a_n=\left( \frac{[キ]}{[ク]} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$であり,$\displaystyle c_n=\frac{b_n}{{[カ]}^{n-1}}$とおくと,$\displaystyle c_{n+1}-c_n=\left( \frac{[ケ]}{[コ]} \right)^n (n=1,\ 2,\ 3,\ \cdots)$が成り立つ.
(3)$\displaystyle f_n(x)=\left( \frac{[キ]}{[ク]} \right)^{n-1}x^2+\left\{ [サ] \cdot \left( \frac{[シ]}{[ス]} \right)^{n-1}-[セ] \cdot {[ソ]}^{n-1} \right\} x$
である.
(4)$x$の方程式$f_n(x)=0$の$x=0$とは異なる解を$x=p_n$とする.不等式$p_n>M$がすべての正の整数$n$に対して成り立つような定数$M$のうち,最大の整数は$M=[タチ]$であり,$[タチ]<p_n<[タチ]+1$となるような最小の$n$は$[ツ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
スポンサーリンク

「漸化式」とは・・・

 まだこのタグの説明は執筆されていません。