タグ「減少」の検索結果

2ページ目:全23問中11問~20問を表示)
熊本大学 国立 熊本大学 2013年 第3問
半径$1$,中心角$\theta (0<\theta<\pi)$の扇形に内接する円の半径を$f(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$を求めよ.
(2)$0<\theta<\pi$の範囲で$f(\theta)$は単調に増加し,$f^\prime(\theta)$は単調に減少することを示せ.
(3)定積分
\[ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} f(\theta) \, d\theta \]
を求めよ.
山梨大学 国立 山梨大学 2013年 第1問
次の問いに答えよ.

(1)$|x-2|+|x+3|<6$を満たす実数$x$の値の範囲を求めよ.
(2)$a_1=1,\ a_2=2,\ a_{n+2}-2a_{n+1}+a_n=1$で定められる数列$\{a_n\}$の一般項$a_n$を求めよ.
(3)毎年$1$月の人口調査で,人口が前年の$98 \%$に減少していく都市がある.この都市の人口が,初めて今年の調査の$70 \%$以下になるのは何年後の調査のときか.ただし,$\log_{10}2=0.3010$,$\log_{10}7=0.8451$として,答えは整数で求めよ.
(4)直線$y=2x$と放物線$\displaystyle y=x^2+4x+\cos 2\theta+\frac{1}{2} \ (0 \leqq \theta \leqq 2\pi)$がある.放物線に直線が接するときの$\theta$の値を求めよ.
安田女子大学 私立 安田女子大学 2013年 第2問
定価が$1$個$60$円の商品がある.この商品を定価と同じ価格で販売したところ,$1$日の売り上げ個数は$1500$個であった.このとき,次の問いに答えよ.

(1)この商品を定価以上の価格で販売したところ,$1$円値上げするごとに$1$日の売り上げ個数が$15$個の割合で減少した.定価からの値上げ額を$x$円,$1$日の売り上げを$y$円として,$y$を$x$の関数で表せ.ただし,$x \geqq 0$,$y \geqq 0$とする.
(2)$(1)$の場合において,この商品の価格がいくらのとき,$1$日の売り上げが最高になるか求めよ.また,そのときの売り上げがいくらになるか求めよ.
(3)この商品を定価以下の価格で販売したところ,$1$円値下げするごとに$1$日の売り上げ個数が$50$個の割合で増えた.このとき,$(2)$で求めた売り上げの最高額よりも$1$日の売り上げが高くなるような価格の範囲を求めよ.
大分大学 国立 大分大学 2012年 第3問
関数$\displaystyle y=f(x)=x^3-\frac{3}{2}x^2+\frac{3}{2}$に関して,次の問いに答えよ.

(1)$y=f(x)$と$y=x$のグラフを描け.
(2)$\displaystyle 1<x_0<\frac{3}{2}$に対して,$x_{n+1}=f(x_n) \ (n=0,\ 1,\ 2,\ \cdots)$を定義する.このとき,$x_n > x_{n+1} \ (n=0,\ 1,\ 2,\ \cdots)$を示せ.
(3)数列$\{a_n\}$が単調減少で,ある実数$L$に対して$a_n > L \ (n=0,\ 1,\ 2,\ \cdots)$ならば$\displaystyle \lim_{n \to \infty}a_n$が存在する.このことを用いて,数列$\{x_n\}$の極限を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第4問
$\displaystyle f(x)=x^3-\frac{7}{2}x^2+\frac{7}{2}x$として数列$\{a_n\}$を
\[ a_1=\frac{4}{3},\quad a_{n+1}=f(a_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,次の問に答えよ.

(1)$f(x)$は区間$\displaystyle \frac{4}{5} \leqq x \leqq \frac{4}{3}$で減少することを示せ.

(2)$\displaystyle \frac{4}{5} \leqq a_n \leqq \frac{4}{3} (n=1,\ 2,\ 3,\ \cdots)$を示せ.

(3)$\displaystyle \frac{1}{3} \left( \frac{9}{25} \right)^{n-1} \leqq |a_n-1| \leqq \frac{1}{3} \left( \frac{9}{16} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
明治大学 私立 明治大学 2012年 第1問
次の空欄$[ア]$から$[エ]$に当てはまるものを答えよ.ただし,$\log$は自然対数,$e$はその底である.

(1)$\displaystyle\lim_{n \to \infty} \left( \sqrt{n^2+n} - \sqrt{n^2-n} \right) = [ア]$

(2)$\displaystyle\lim_{x \to 0} \frac{32^x-1}{8^x-1} = [イ]$

(3)ある物質$\mathrm{P}$は時間とともに変化し,その量が減少する.時刻$t$における物質$\mathrm{P}$の量$y(t)$は,
\[ y(t) = ae^{-kt} \quad (t \geqq 0) \]
であるとする.ただし,$a>0,\ k>0$は定数であり,$a$は時刻$t=0$における物質$\mathrm{P}$の量である.物質$\mathrm{P}$の量が$\displaystyle \frac{a}{2}$となる時刻$t_0$は
\[ t_0 = [ウ]\log [エ]\]
である.
広島修道大学 私立 広島修道大学 2012年 第3問
次の問に答えよ.

(1)$a,\ m$を定数とする.関数$y=x^3+3x^2+mx+m$が区間$x \leqq a$,$a+2 \leqq x$で増加し,区間$a \leqq x \leqq a+2$で減少するように$a$と$m$の値を定めよ.
(2)不等式$(x^{\log_3 x})^2+x^{5 \log_x3}-84 x^{\log_3x}<0$を解け.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$\displaystyle 0 \leqq \alpha<\beta \leqq \frac{\pi}{2}$かつ$R>0$とする.極座標$(r,\ \theta)$に関する条件
\[ 0 \leqq r \leqq R,\quad \alpha \leqq \theta \leqq \beta \]
により定まる図形を$x$軸のまわりに回転させて得られる立体の体積を$T$とする.$T$を$\alpha,\ \beta,\ R$を用いた式で表すと
\[ T=[あ] \]
である.
(2)極方程式$r=f(\theta) (0 \leqq \theta \leqq \alpha)$で表される曲線$C$と,$\theta=\alpha$で表される直線$\ell$および$x$軸の正の部分で囲まれた図形を$S$とする.ただし$\displaystyle 0<\alpha<\frac{\pi}{2}$とし,関数$f(\theta)$は連続かつ$f(\theta)>0$をみたし,$0 \leqq \theta \leqq \alpha$において増加または減少または定数とする.
$S$を$x$軸のまわりに回転させて得られる立体の体積を$V(\alpha)$とすると
\[ \frac{d}{d\alpha}V(\alpha)=[い] \]
であり,したがって
\[ V(\alpha)=[う] \]
である.また$S$を直線$\ell$のまわりに回転させて得られる立体の体積を$W(\alpha)$とすると
\[ W(\alpha)=[え] \]
である.
(3)$(2)$において$f(\theta)=\sqrt[3]{\cos \theta}$とするとき$\displaystyle V \left( \frac{\pi}{4} \right)$,$\displaystyle W \left( \frac{\pi}{4} \right)$の値を求めると
\[ V \left( \frac{\pi}{4} \right)=[お],\quad W \left( \frac{\pi}{4} \right)=[か] \]
である.
茨城大学 国立 茨城大学 2011年 第1問
$f(x)=e^{-x^2} \ (x \geqq 0)$とする.以下の各問に答えよ.

(1)$x \geqq 0$に対して,不等式$e^x>x$および$\displaystyle e^x>\frac{x^2}{2}$が成り立つことを示せ.
(2)$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$および$\displaystyle \lim_{t \to +0} t \log \frac{1}{t}=0$を示せ.
(3)$f(x)$は減少関数であることを示せ.また,$y = f(x)$の逆関数$x = g(y)$を求めよ.
(4)$a$を$0<a<1$を満たす実数とする.$y$軸,$y= f(x)$のグラフおよび直線$y = a$で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V(a)$を求めよ.
(5)(4)で求めた$V(a)$に対し$\displaystyle \lim_{a \to +0}V(a)$を求めよ.
旭川医科大学 国立 旭川医科大学 2011年 第3問
曲線$y=e^{ax+b} \ (a \geqq 1)$と曲線$y=e^{-x}$が一点で交わり,交点におけるそれぞれの接線が垂直に交わっているとする.次の問いに答えよ.

(1)交点の座標を$(x(a),\ y(a))$とおくとき,$b,\ x(a),\ y(a)$をそれぞれ$a$を用いて表せ.
(2)曲線$y=e^{ax+b} \ (a \geqq 1)$を$C(a)$で表す.曲線$C(a)$と曲線$C(a+1)$の交点の$x$座標を$X(a)$とおくとき,
\[ \lim_{a \to \infty}(X(a)-x(a)) \]
を求めよ.
(3)$X(a)-x(a)$は$a \geqq 1$のとき単調減少であることを示せ.
スポンサーリンク

「減少」とは・・・

 まだこのタグの説明は執筆されていません。