タグ「消去」の検索結果

1ページ目:全8問中1問~10問を表示)
札幌医科大学 公立 札幌医科大学 2016年 第3問
$2$種類の文字「$\mathrm{A}$」,「$\mathrm{B}$」を$1$つずつ左から右に書いていく.書かれる文字が$\mathrm{A}$か$\mathrm{B}$かは確率$\displaystyle \frac{1}{2}$で決まるものとする.しかし,次の$2$つのルールにより文字が消去されることがある:

\mon[$1.$] 右端の$\mathrm{A}$の右隣に$\mathrm{B}$が書かれる場合,その$\mathrm{B}$は確率$\displaystyle \frac{2}{3}$で消去される
\mon[$2.$] 右端の$\mathrm{B}$の左側に$\mathrm{A}$が$1$つ以上存在する場合,それらのうちでもっとも右にある$\mathrm{A}$を$\maruA$と呼ぶ.この状況で,右端の$\mathrm{B}$の右隣に$\mathrm{A}$が書かれる場合,確率$\displaystyle \frac{2}{3}$でその$\mathrm{A}$と$\maruA$より右側のすべての文字が消去される(ただし$\maruA$は消去されない).

上記$2$つのルールにあてはまらない場合は,消去される文字はないものとする.$n$文字を書いたときに,実際に残っている文字数を$a_n$とする.例えば,$3$文字を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{A}$の順に書いた場合の結果は「$\mathrm{ABA}$」,「$\mathrm{AA}$」,「$\mathrm{A}$」のいずれかとなる.

(1)$a_3=2$となる確率を求めよ.
(2)$a_4=1$となる確率を求めよ.
(3)$a_n=n$となる確率を$n$を用いて表せ.
琉球大学 国立 琉球大学 2015年 第4問
$t$を媒介変数として,$\displaystyle x=t+\frac{1}{t}+\frac{5}{2}$,$\displaystyle y=2t-\frac{2}{t}$で表される曲線を考える.次の問いに答えよ.

(1)$t$を消去して,$x$と$y$の関係式を求めよ.
(2)$a$を定数とするとき,直線$y=ax+5$とこの曲線との共有点の個数を調べよ.
立教大学 私立 立教大学 2015年 第3問
次の条件を満たす数列$\{a_n\}$を考える.
\[ a_1=4,\quad a_{n+1}=\frac{1}{2} \{3+(-1)^n\}a_n-1 \quad (n=1,\ 2,\ \cdots) \]
このとき,次の問に答えよ.

(1)奇数番目の項のみからなる数列を$\{b_n\}$,偶数番目の項のみからなる数列を$\{c_n\}$とする.つまり,$b_n=a_{2n-1}$,$c_n=a_{2n}$とする.$b_{n+1}$,$c_n$,$b_n$が次の関係式を満たすとき,定数$A,\ B,\ C,\ D$の値をそれぞれ求めよ.
\[ \begin{array}{r}
b_{n+1}=Ac_n+B \\
\phantom{\frac{[ ]}{2}} c_n=Cb_n+D
\end{array} \qquad (n=1,\ 2,\ \cdots) \]
(2)$(1)$において$c_n$を消去し,$b_{n+1}$を$b_n$を用いて表せ.
(3)数列$\{b_n\}$,$\{c_n\}$の一般項をそれぞれ$n$を用いて表せ.
(4)数列$\{a_n\}$の第$1$項から第$2k$項までの和$S_{2k}$を$k$を用いて表せ.
千葉工業大学 私立 千葉工業大学 2014年 第4問
$xy$平面上に放物線$\displaystyle C:y=\frac{1}{4}x^2+4$と点$\mathrm{P}(p,\ 0)$がある.ただし,$p \geqq 0$とする.$C$上の点$\displaystyle \left( p,\ \frac{1}{4}p^2+4 \right)$における$C$の接線を$\ell$とし,$\ell$に関して,$\mathrm{P}$と対称な点を$\mathrm{Q}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$p=0$のとき,$\mathrm{Q}(0,\ [ア])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{p}{[イ]}x-\frac{[ウ]}{[エ]}p^2+[オ]$である.線分$\mathrm{PQ}$の中点が$\ell$上にあることから
\[ Y=\frac{p}{[カ]}X+[キ] \cdots\cdots (*) \]
が成り立つ.
(3)$p>0$のとき,$\mathrm{Q}$が,$\mathrm{P}$を通り$\ell$と直交する直線上にあることから
\[ Y=\frac{[クケ]}{p}X+[コ] \cdots\cdots (**) \]
が成り立つ.$(*)$と$(**)$から$p$を消去することにより
\[ X^2+Y^2-[サシ]Y+[スセ]=0 \]
が成り立つことがわかる.
(4)$X$の最小値は$[ソタ]$であり,このとき$p=[チ]$である.$p$が$0$から$[チ]$まで変化するとき,線分$\mathrm{PQ}$が通過する部分の面積は$\displaystyle \frac{[ツ]}{[テ]} \pi+\frac{[トナ]}{[ニ]}$である.
三重大学 国立 三重大学 2012年 第4問
媒介変数$\theta$を用いて$\displaystyle x=2\cos \theta,\ y=3\sin \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$と表される曲線がある.

(1)この曲線について$\theta$を消去して,$x,\ y$の方程式を求め,その概形をかけ.
(2)曲線上の点P$(2\cos \theta,\ 3\sin \theta)$での接線の方程式を求めよ.
(3)(2)で求めた接線と$x$軸,$y$軸とで作られる三角形の面積$S$を$\theta$の関数として表せ.
茨城大学 国立 茨城大学 2012年 第2問
すべての実数$t$に対して関数$f(t),\ g(t)$を$f(t)=e^t-e^{-t},\ g(t)=e^t+e^{-t}$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)すべての$t$に対して$g(t) \geqq 2$であることを示せ.
(2)$f(t)$は単調増加であることを示せ.
(3)$x=f(t),\ s=e^t$とするとき,$s$を$x$を用いて表せ.
(4)$x=f(t)$の逆関数$t=f^{-1}(x)$を求めよ.
(5)不定積分$\displaystyle \int \frac{1}{\sqrt{x^2+4}} \, dx$を$x=f(t)$と置換積分して求めよ.
(6)座標平面上で$t$を媒介変数とする曲線$x=f(t),\ y=g(t)$を考える.この曲線を,媒介変数$t$を消去して$x,\ y$に関する方程式で表せ.
関西学院大学 私立 関西学院大学 2012年 第2問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$a,\ b$は実数とする.$x$についての整式
\[ F(x)=x^3+x^2+ax+b \]
が$x+3$で割り切れるとすると,$b=[ア]$が成り立つ.ただし,$[ア]$は$a$の式である.$b=[ア]$を用いて$F(x)$の式から$b$を消去すると,$F(x)=[イ]$となる.整式$[イ]$を$x+3$で割ったときの商は$[ウ]$である.整式$[ウ]$が,さらに$x+3$で割り切れるとき,$a$の値は$a=[エ]$である.よって,整式$F(x)$が$(x+3)^2$で割り切れるとき,$a$と$b$の値は$a=[エ]$,$b=[オ]$である.
(2)数列$\{a_n\}$は次の条件によって定められるとする.
\[ a_1=1,\quad a_{n+1}=3a_n+2 \quad (n=1,\ 2,\ 3,\ \cdots) \]
$a_{n+1}=3a_n+2$は$a_{n+1}+1=[カ](a_n+[キ])$と変形できる.よって$b_n=a_n+[キ] (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は等比数列となり,その一般項は$[ク]$である.よって,数列$\{a_n\}$の一般項は$[ケ]$である.また,$s_1=2$,$s_{n+1}=4s_n+3 (n=1,\ 2,\ 3,\ \cdots)$という条件で定められる数列$\{s_n\}$の一般項は$[コ]$である.
防衛医科大学校 国立 防衛医科大学校 2011年 第3問
$xyz$空間の3点A$(5,\ 0,\ 0)$,B$(4,\ 1,\ 0)$,C$(5,\ 0,\ \sqrt{2})$が定める平面を$T$,$T$上にあって点Aを中心として半径$\sqrt{2}$をもつ円を$U$とする.このとき,以下の問に答えよ.

(1)点Pは円$U$の周上にある.$\angle \text{PAB}=\theta \ (0 \leqq \theta <2\pi)$とするとき,Pの座標$(u,\ v,\ r)$を$\theta$を用いて表せ.
(2)2点D$(10,\ 0,\ 0)$,Pを通る直線が$yz$平面と交わる点をQ$(0,\ Y,\ Z)$とする.$Y$と$Z$を$\theta$を用いて表せ.
(3)(2)の$Y,\ Z$から$\theta$を消去して,Qの軌跡が楕円になることを示せ.また,その楕円の概形を$yz$平面上に図示せよ.
スポンサーリンク

「消去」とは・・・

 まだこのタグの説明は執筆されていません。