タグ「注意」の検索結果

2ページ目:全28問中11問~20問を表示)
三重大学 国立 三重大学 2013年 第5問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに動くとする.$n$を正の整数として,$\mathrm{A}$から出発して$n$秒後に$\mathrm{A}$に戻る経路の数を$\alpha_n$,$\mathrm{A}$から出発して$n$秒後に$\mathrm{B}$に到達する経路の数を$\beta_n$とする.このとき,$\mathrm{A}$から出発して$n$秒後に$\mathrm{C}$に到達する経路の数も,$\mathrm{D}$に到達する経路の数も$\beta_n$となる.このことに注意して,以下の問いに答えよ.ただし$\alpha_0=1$,$\beta_0=0$とする.

(1)$\alpha_2,\ \beta_2,\ \alpha_2+3 \beta_2,\ \alpha_3,\ \beta_3,\ \alpha_3+3 \beta_3$を求めよ.
(2)$n \geqq 1$に対し$\alpha_n,\ \beta_n$を$\alpha_{n-1},\ \beta_{n-1}$で表せ.
(3)$c_n=\alpha_n-\beta_n$とおいて$c_n$の一般項を求めよ.
(4)$\alpha_n$の一般項を求めよ.
三重大学 国立 三重大学 2013年 第3問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに,等しい確率で動くとする.$n$を$0$以上の整数とし,点$\mathrm{P}$が$n$秒後に$\mathrm{A}$にある確率を$p_n$,$\mathrm{B}$にある確率を$q_n$とする.このとき,$n$秒後に$\mathrm{C}$にある確率も,$\mathrm{D}$にある確率も$q_n$となる.このことに注意して,以下の問いに答えよ.ただし,$p_0=1,\ q_0=0$とする.

(1)$n \geqq 1$に対し$p_n,\ q_n$を$p_{n-1},\ q_{n-1}$で表せ.
(2)$c_n=p_n-q_n$とおいて$c_n$の一般項を求めよ.
(3)$p_n$の一般項を求めよ.
長崎大学 国立 長崎大学 2013年 第2問
次の問いに答えよ.

(1)$\displaystyle a_1=\frac{3}{2},\ a_{n+1}+2a_{n+1}a_n-3a_n=0 \ (n \geqq 1)$で与えられる数列$\{a_n\}$について,$a_2,\ a_3,\ a_4,\ a_5$の値を求めよ.また,一般項$a_n$を推測し,その推測の結果を数学的帰納法で証明せよ.
(2)$\displaystyle \frac{7}{12}\pi=\frac{\pi}{3}+\frac{\pi}{4}$であることを利用して$\displaystyle \sin \frac{7}{12}\pi$を求め,$1 \leqq x \leqq 4$のとき,次の方程式を解け.
\[ \sin x=\frac{\sqrt{6}+\sqrt{2}}{4} \]
(3)$\displaystyle 0 \leqq x<\frac{\pi}{2}$とする.このとき,$X=\log_2 \cos x$の範囲を求め,次の不等式を解け.
\[ 2(\log_2 \cos x)^2+(4-\log_2 3)\log_2 \cos x+2-\log_23 \leqq 0 \]
{\bf 注意:} $\log_2 \cos x$は$\log_2(\cos x)$を表す.
三重大学 国立 三重大学 2013年 第4問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに動くとする.$n$を正の整数として,$\mathrm{A}$から出発して$n$秒後に$\mathrm{A}$に戻る経路の数を$\alpha_n$,$\mathrm{A}$から出発して$n$秒後に$\mathrm{B}$に到達する経路の数を$\beta_n$とする.このとき,$\mathrm{A}$から出発して$n$秒後に$\mathrm{C}$に到達する経路の数も,$\mathrm{D}$に到達する経路の数も$\beta_n$となる.このことに注意して,以下の問いに答えよ.ただし$\alpha_0=1$,$\beta_0=0$とする.

(1)$\alpha_2,\ \beta_2,\ \alpha_2+3 \beta_2,\ \alpha_3,\ \beta_3,\ \alpha_3+3 \beta_3$を求めよ.
(2)$n \geqq 1$に対し$\alpha_n,\ \beta_n$を$\alpha_{n-1},\ \beta_{n-1}$で表せ.
(3)$c_n=\alpha_n-\beta_n$とおいて$c_n$の一般項を求めよ.
(4)$\alpha_n$の一般項を求めよ.
中京大学 私立 中京大学 2013年 第3問
次の各問に答えよ.

(1)$504$の正の約数はいくつあるか求めよ.$1$と$504$自身も正の約数であることに注意せよ.
(2)$504$と自然数$x$との最大公約数を$g$,最小公倍数を$l$とする.$504$の正の約数の個数を$n$としたとき,$g$の正の約数の個数は$\displaystyle \frac{n}{3}$,$l$の正の約数の個数は$\displaystyle \frac{9}{2}n$であった.$x$の素因数が$2,\ 3,\ 5,\ 7$であるとき,$g,\ l,\ x$の値を求めよ.
京都薬科大学 私立 京都薬科大学 2013年 第3問
濃度$a \, \%$の食塩水$300 \, \mathrm{g}$が入っている容器$\mathrm{A}$と,濃度$b \, \%$の食塩水$400 \, \mathrm{g}$が入っている容器$\mathrm{B}$がある.$\mathrm{A}$より$100 \, \mathrm{g}$の食塩水をとってそれを$\mathrm{B}$に移し,よくかき混ぜた後に同量を$\mathrm{A}$に戻すとする.この操作を$n$回繰り返したときの$\mathrm{A}$,$\mathrm{B}$の食塩水の濃度を求めたい.次の$[ ]$にあてはまる数または式を記入せよ.

(1)容器$\mathrm{A}$と容器$\mathrm{B}$に,最初にあった食塩の量の和は$[$*$] \mathrm{g}$である.
(2)$n (\geqq 1)$回の操作の後,容器$\mathrm{A}$の濃度が$x_n \, \%$,容器$\mathrm{B}$の濃度が$y_n \, \%$になっていたとする.$y_n$を$x_{n-1}$と$y_{n-1}$を用いて表すと,
\[ y_n=[ ] x_{n-1}+[ ] y_{n-1} \]
となる.また,$x_n$を$x_{n-1}$と$y_{n-1}$を用いて表すと,
\[ x_n=[ ] x_{n-1}+[ ] y_{n-1} \]
となる.
(3)食塩の量の和は一定であることに注意すると,
\[ [$* *$] x_n+[$***$] y_n=[$**$] x_{n-1}+[$***$] y_{n-1}=\cdots =[$*$] \]
(4)$(3)$で与えられた関係式を使って,数列$\{x_n\}$の漸化式をつくると,
\[ x_n=[ ] x_{n-1}+[ ] \]
となる.この漸化式を解くことによって,$x_n$を$a$と$b$および$n$を用いて表すと,
\[ x_n=[ ] \]
また,$y_n$を$a$と$b$および$n$を用いて表すと,
\[ y_n=[ ] \]
となる.
杏林大学 私立 杏林大学 2013年 第3問
$x \geqq 1$の実数$x$に対し,方程式
\[ f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t} \, dt \]
を満たす関数$f(x)$について,以下の問いに答えよ.

(1)$\displaystyle \int_1^e \frac{(\log_e t)^2}{t} \, dt=\frac{[ア]}{[イ]}$であることに注意すると,
\[ f(x)=(\log_e x)^2-\frac{[ウ]}{[エ]} \]
となる.また,曲線$y=f(x)$の変曲点の$y$座標の値は$\displaystyle \frac{[オ]}{[カ]}$である.
(2)点$(e,\ f(e))$における$y=f(x)$の接線の方程式は
\[ y=[キ] e^{[クケ]} x-\frac{[コ]}{[サ]} \]
である.この接線と曲線$y=f(x)$および直線$x=1$で囲まれた図形の面積は
\[ [シス]+\frac{1}{e} \left( [セ]+e^{[ソ]} \right) \]
である.
杏林大学 私立 杏林大学 2013年 第4問
$[オ]$,$[タ]$,$[チ]$,$[ト]$,$[ナ]$の解答は対応する解答群の中から最も適当なものを$1$つ選べ.

条件$a_1=0$,$a_2=0$と漸化式
\[ a_{n+2}-3a_{n+1}+2a_n=2^n \log_2 \frac{(n+1)^2}{n} \cdots\cdots (*) \]
$(n=1,\ 2,\ 3,\ \cdots)$で定められる数列の一般項を,以下の要領で求めてみよう.

(1)漸化式$(*)$より,ベクトル$\overrightarrow{b_n}=\left( \begin{array}{c}
a_{n+1} \\
a_n
\end{array} \right)$に対して
\[ \overrightarrow{b_{n+1}}=A \overrightarrow{b_n}+\left( \begin{array}{c}
2^n \log_2 \displaystyle\frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
が成立する.ただし,行列$A$は$A=\left( \begin{array}{cc}
[ア] & [イウ] \\
[エ] & 0
\end{array} \right)$である.
この式の両辺に,$A$の逆行列$A^{-1}$を左から$n$回かけると
\[ (A^{-1})^n \overrightarrow{b_{n+1}}=(A^{-1})^{n-1} \overrightarrow{b_n}+(A^{-1})^n \left( \begin{array}{c}
\displaystyle 2^n \log_2 \frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
となり,$(A^{-1})^{n-1} \overrightarrow{b_n}$の階差数列がわかる.これより,$2$以上の整数$n$に対し,
\[ (A^{-1})^{n-1} \overrightarrow{b_{n}}=\overrightarrow{b_1}+\sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right) \cdots\cdots (**) \]
を得る.
(2)$(**)$式の右辺第一項は$\overrightarrow{b_1}=\left( \begin{array}{c}
[カ] \\
[キ]
\end{array} \right)$であり,$\displaystyle A^{-1}=\frac{1}{2} \left( \begin{array}{cc}
[ク] & [ケ] \\
[コサ] & [シ]
\end{array} \right)$は行列$P=\left( \begin{array}{cc}
2 & 1 \\
1 & 1
\end{array} \right)$を用いて
\[ A^{-1}=P \left( \begin{array}{cc}
\displaystyle\frac{[ス]}{[セ]} & 0 \\
0 & [ソ]
\end{array} \right) P^{-1} \]
と表されるので,$(**)$式右辺の和の項について,次式が成立する.
\[ \sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right)=P \left( \begin{array}{c}
\log_2 [タ] \\
-2^n \log_2 [チ]
\end{array} \right) \]
(3)$(2)$の結果と,行列$A$が同じ$P$を用いて
\[ A=P \left( \begin{array}{cc}
[ツ] & 0 \\
0 & [テ]
\end{array} \right) P^{-1} \]
と表わされることに注意すると,$(**)$式の両辺に行列$A$を左から$(n-1)$回かけて得られる$\overrightarrow{b_n}$から,一般項$a_n$は
\[ a_n=2^{[ト]} \log_2 [ナ] \]
($n=2,\ 3,\ 4,\ \cdots$)となる.

$[オ]$,$[ト]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan n+1 & \nagamarushi 1-n \\
\nagamarugo -n & \nagamaruroku -n-1 \phantom{AA} & \nagamarushichi \displaystyle\frac{n(n+1)}{2} \phantom{AA} & \nagamaruhachi n^2-1 \\
\nagamarukyu \displaystyle\frac{1}{6}n(n+1)(2n+1) & & &
\end{array} \]
$[タ]$,$[チ]$,$[ナ]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan \displaystyle\frac{n+1}{n} \phantom{AA} & \nagamarushi \displaystyle\frac{4n-6}{n} \\
\nagamarugo n^2-4n+5 & \nagamaruroku (n-1)! \phantom{AA} & \nagamarushichi n! \phantom{AA} & \nagamaruhachi n!-1 \\
\nagamarukyu (n-1) \times n! \phantom{AA} & \nagamarurei n \times n! & &
\end{array} \]
福岡女子大学 公立 福岡女子大学 2013年 第3問
関数$f(x)$に対して,
\[ \int_0^x f(t) \, dt=-x^3+ax^2+bx+c \]
とする.$a,\ b,\ c$は定数である.以下の問に答えなさい.

(1)$f(x)$は,$x=p$で最大値$q$をとる.$p,\ q$を$a,\ b$を用いて表しなさい.

(2)$\displaystyle F(x)=\int_0^x f(t) \, dt$とおき,$F(3)=0$,$f(2)=0$とする.$F(0)=0$となることに注意して,$a,\ b,\ c$の値を求めなさい.
(3)$(2)$の条件の下で,方程式$f(x)=0$のもう$1$つの解を求めなさい.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
スポンサーリンク

「注意」とは・・・

 まだこのタグの説明は執筆されていません。