タグ「法線」の検索結果

6ページ目:全63問中51問~60問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.ただし$(2)$において,適切な$t$の値が複数個ある場合は,それらをすべて記入しなさい.

放物線$y=x^2$を$C$とする.$C$上に点$\mathrm{P}(-1,\ 1)$をとり,$\mathrm{P}$における$C$の法線と$C$との交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.また$t$を実数として,点$\mathrm{P}$をとおって傾きが$t$の直線を$\ell_1$とし,点$\mathrm{Q}$をとおって$\ell_1$と直交する直線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)点$\mathrm{Q}$の座標は$([あ],\ [い])$である.
(2)点$\mathrm{R}$が点$\mathrm{P}$,$\mathrm{Q}$と異なるように$t$を変化させるときの$\triangle \mathrm{PQR}$の面積の最大値は$[う]$である.また$\triangle \mathrm{PQR}$の面積を最大にする$t$の値をすべて求めると$t=[え]$である.
(3)点$\mathrm{P}$,$\mathrm{Q}$とは異なる$C$上の点$\mathrm{T}(u,\ u^2)$を考える.$\overrightarrow{\mathrm{TP}} \cdot \overrightarrow{\mathrm{TQ}}<0$となるような$u$の範囲は
\[ [お]<u<[か] \]
である.
(4)点$\mathrm{R}$が,不等式$y<x^2$の表す領域に入るような$t$の範囲は
\[ [き]<t<[く] \]
である.
名古屋市立大学 公立 名古屋市立大学 2012年 第4問
曲線$C:y=(\log x-2 \log 2) \log x$について次の問いに答えよ.

(1)関数の増減と凹凸を調べ,曲線$C$の概形をかけ.曲線$C$が$x$軸および$y$軸と共有点がある場合にはその点の座標を明記すること.また,極値を表す点や変曲点がある場合にはその座標を明記すること.
(2)変曲点における接線と法線の方程式を求めよ.また,接線と$x$軸との交点$\mathrm{P}$および法線と$x$軸との交点$\mathrm{Q}$の座標を求めよ.
(3)原点を$\mathrm{O}$とし,変曲点から$x$軸に下ろした垂線が$x$軸と交わる点を$\mathrm{R}$とする.線分$\mathrm{OP}$の長さと線分$\mathrm{QR}$の長さの積を求めよ.
(4)曲線$C$と$x$軸で囲まれる図形の面積を求めよ.
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
信州大学 国立 信州大学 2011年 第6問
曲線$y=e^x$上の点$\mathrm{A}$における接線と法線が$x$軸と交わる点を,それぞれ$\mathrm{B}$,$\mathrm{C}$とする.$\triangle \mathrm{ABC}$の面積が$5$のとき,$\triangle \mathrm{ABC}$の外心の座標を求めよ.
早稲田大学 私立 早稲田大学 2011年 第1問
$xy$-平面上の放物線$y=x^2$を$C$とする.以下の問に答えよ.

(1)$C$上の点$(a,\ a^2)$における$C$の法線の方程式を求めよ.
(2)点$(1,\ 2)$を通る$C$の法線の数を求めよ.
(3)点$\displaystyle (t,\ t+\frac{1}{2})$を通る$C$の法線の数が$2$となるための$t$に対する条件を求めよ.
早稲田大学 私立 早稲田大学 2011年 第4問
$xy$-平面上の原点を$\mathrm{O}$とし,楕円$\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>b>0)$を$E$とする.$E$上の点$\mathrm{P}(s,\ t)$における$E$の法線と$x$軸との交点を$\mathrm{Q}$とする.点$\mathrm{P}$が$s>0,\ t>0$の範囲を動くとき,$\angle \mathrm{OPQ}$が最大になる点$\mathrm{P}$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
放物線$C:y=x^2$の点A$(a,\ a^2) \ (a>0)$における法線を$\ell$とする.次の問いに答えよ.

(1)直線$\ell$と放物線$C$で囲まれる図形の面積$S$を求めよ.
(2)直線$\ell$と放物線$C$の2つの交点をA,Bとする.点A,Bにおける$C$の接線の交点Pの座標を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第3問
座標平面内において,楕円$\displaystyle x^2+\frac{y^2}{3}=1$の$x \geqq 0,\ y \geqq 0$の部分の曲線を$C$とする.$x_0>0,\ y_0>0$とし,曲線$C$上に点P$(x_0,\ y_0)$をとり,点Pにおける曲線$C$の法線を$\ell$とする.このとき,次の問いに答えよ.

(1)直線$\ell$と$x$軸との交点を$(x_1,\ 0)$とするとき,$x_1$を$x_0,\ y_0$を用いて表せ.
(2)$x_0=\cos \theta,\ y_0=\sqrt{3}\sin \theta$と表す.このとき,曲線$C$と直線$\ell$および$x$軸とで囲まれた部分の面積$S(\theta)$を$\theta$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,(2)で求めた面積$S(\theta)$の最大値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第4問
関数$\displaystyle f(x)=\frac{\log x}{x\sqrt{x}} \ (x>1)$に対して次の問いに答えよ.必要ならば,自然対数の底$e$の値は$2<e<3$であることを用いてよい.

(1)関数$f(x)$の増減を調べよ.
(2)曲線$y=f(x)$上の点P$(t,\ f(t))$における法線$\ell$の方程式を求めよ.
(3)点Pから$x$軸に下ろした垂線をPQとする.(2)で求めた法線$\ell$と$x$軸との交点をRとする.2点Q,Rの距離の最大値を求めよ.
福井大学 国立 福井大学 2010年 第4問
$k$を実数とする.Oを原点とする座標平面上の曲線$C:y=\log x -k$について,$C$の接線のうちOを通るものを$\ell_1$とし,その接点をPとする.以下の問いに答えよ.

(1)$\ell_1$の方程式を,$k$を用いて表せ.
(2)点Pにおける$C$の法線を$\ell_2$とし,$\ell_2$と$x$軸との交点の$x$座標を$\alpha$とおく.$\alpha$を$k$を用いて表せ.さらに,$\alpha$が最小となる$k$の値および$\alpha$の最小値を求めよ.
(3)$k$を(2)で求めた値とするとき,$C$と$\ell_1$および$x$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「法線」とは・・・

 まだこのタグの説明は執筆されていません。