タグ「法線」の検索結果

3ページ目:全63問中21問~30問を表示)
埼玉大学 国立 埼玉大学 2014年 第3問
$\displaystyle f(x)=x^3-\frac{1}{2}x$とする.曲線$C:y=f(x)$上に$2$点$\mathrm{P}(t,\ f(t))$,$\mathrm{Q}(-t,\ f(-t)) (t>0)$をとり,点$\mathrm{P}$における接線と法線,および,点$\mathrm{Q}$における接線と法線によって囲まれる図形を$A$とする.

(1)点$\mathrm{P}$における接線を$\ell_1$,法線を$\ell_2$とし,原点$(0,\ 0)$と$\ell_1$,$\ell_2$との距離をそれぞれ$d_1$,$d_2$とおく.$d_1$,$d_2$を$t$を用いて表せ.
(2)$(1)$で定めた$d_1$,$d_2$に対し,$d_1=d_2$となるような$t$の値をすべて求めよ.
(3)$(2)$で求めたそれぞれの$t$の値に対し,図形$A$の面積を求めよ.
埼玉大学 国立 埼玉大学 2014年 第3問
$\displaystyle f(x)=x^3-\frac{1}{2}x$とする.曲線$C:y=f(x)$上に$2$点$\mathrm{P}(t,\ f(t))$,$\mathrm{Q}(-t,\ f(-t))$ $(t>0)$をとり,点$\mathrm{P}$における接線と法線,および,点$\mathrm{Q}$における接線と法線によって囲まれる図形を$A$とする.

(1)点$\mathrm{P}$における接線を$\ell_1$,法線を$\ell_2$とし,原点$(0,\ 0)$と$\ell_1$,$\ell_2$との距離をそれぞれ$d_1,\ d_2$とおく.$d_1,\ d_2$を$t$を用いて表せ.
(2)$(1)$で定めた$d_1,\ d_2$に対し,$d_1=d_2$となるような$t$の値をすべて求めよ.
(3)$(2)$で求めたそれぞれの$t$の値に対し,図形$A$の面積を求めよ.
茨城大学 国立 茨城大学 2014年 第1問
区間$0<x<\pi$で関数$y=f(x)=\cos (\sqrt{2}x)$を考え,そのグラフを$C$とする.$C$上の点$\mathrm{P}(\theta,\ \cos (\sqrt{2} \theta))$における$C$の法線を$\ell$,$\ell$と$x$軸との交点を$\mathrm{Q}$,点$\mathrm{P}$と点$\mathrm{Q}$の距離を$g(\theta)$とする.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通りかつ$\mathrm{P}$での$C$の接線に直交する直線のことである.以下の各問に答えよ.

(1)$f(x)$の増減の様子を調べ,$C$の概形をかけ.さらに,$f(x)$の最小値を与える$x$の値,および$C$と$x$軸との交点の$x$座標を求めよ.
(2)$\ell$の方程式を求めよ.
(3)$\mathrm{Q}$の座標を求めよ.
(4)$\theta$が$0<\theta<\pi$の範囲を動くとき,$t=\cos^2 (\sqrt{2} \theta)$の動く範囲と$g(\theta)$の最大値を求めよ.
(5)$\theta$が$0<\theta<\pi$の範囲を動くとき,$g(\theta)$の最大値を与える$\theta$の値をすべて求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
以下の文章の空欄に適切な式を入れて文章を完成させなさい.また$(3) \ (ⅱ)$に答えなさい.

放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$を$C$で表す.$C$上にない点$\displaystyle \mathrm{P}(X,\ Y) \left( \text{ただし} Y<\frac{1}{2}X^2+\frac{1}{2} \right)$から$C$に引いた$2$本の接線のうち,接点の$x$座標が小さい方を$\ell_1$とし,大きい方を$\ell_2$とする.また$\ell_1$,$\ell_2$と$C$との接点をそれぞれ$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.


(1)接線$\ell_1,\ \ell_2$の傾き$m_1,\ m_2$はそれぞれ$m_1=[あ]$,$m_2=[い]$である.
(2)$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の法線をそれぞれ$L_1$,$L_2$とするとき,$L_1$と$L_2$の交点$\mathrm{R}$の座標を$X,\ Y$を用いた式で表すと
\[ \left( [う],\ [え] \right) \]
である.
(3)$\angle \mathrm{Q}_1 \mathrm{PQ}_2$が一定値$\alpha$(ただし$0<\alpha<\pi$)となるような点$\mathrm{P}(X,\ Y)$の軌跡を$S(\alpha)$で表す.

(i) $\displaystyle S \left( \frac{\pi}{2} \right)$の方程式は$[お]$である.

(ii) $\displaystyle \alpha \neq \frac{\pi}{2}$のときに$S(\alpha)$を求めなさい.

(4)点$\mathrm{P}(X,\ Y)$が$\displaystyle S \left( \frac{\pi}{2} \right)$の上を動くとき,点$\mathrm{R}$が描く軌跡の方程式は$[か]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
北里大学 私立 北里大学 2014年 第1問
つぎの$[ ]$にあてはまる答を記せ.

(1)空間に$4$点$\mathrm{A}(5,\ 1,\ 3)$,$\mathrm{B}(4,\ 4,\ 3)$,$\mathrm{C}(2,\ 3,\ 5)$,$\mathrm{D}(4,\ 1,\ 3)$がある.

(i) $\overrightarrow{\mathrm{DA}}$と$\overrightarrow{\mathrm{DB}}$のなす角を$\theta$とおくとき,$\theta=[ア]$である.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(ii) 四面体$\mathrm{ABCD}$の体積は$[イ]$である.

(2)$a$を実数とする.$x$についての$2$次方程式$x^2-2x \log_2 \{(a+1)(a-5)\}+4=0$の解の$1$つが$2$であるとき,$a$の値は$[ウ]$である.また,この$2$次方程式が実数解をもたないような$a$の値の範囲は$[エ]$である.
(3)不等式$\displaystyle x^2+2x \leqq y \leqq 2x+2 \leqq \frac{4}{3}y$の表す領域の面積は$[オ]$である.また,この領域上の点$(x,\ y)$のうち,$5x-3y$が最小となるような点の座標は$[カ]$である.
(4)$n$は正の整数とする.階段を$1$度に$1$段,$2$段または$3$段登る.このとき,$n$段からなる階段の登り方の総数を$a_n$とする.例えば,$a_1=1$であり,$a_2=2$である.

(i) $a_3$の値は$[キ]$である.
(ii) $a_4$の値は$[ク]$である.
(iii) $a_{10}$の値は$[ケ]$である.

(5)$\displaystyle 0<t<\frac{\pi}{2}$とする.曲線$y=\sin x$上の点$\displaystyle \mathrm{P} \left( t+\frac{\pi}{2},\ \sin \left( t+\frac{\pi}{2} \right) \right)$における法線を$\ell$とおく.直線$\displaystyle x=\frac{\pi}{2}$を$m$とおき,法線$\ell$と直線$m$の交点を$\mathrm{Q}$とする.

(i) $\displaystyle t=\frac{\pi}{3}$のとき,点$\mathrm{Q}$の座標は$[コ]$である.
(ii) 曲線$y=\sin x$と法線$\ell$および直線$m$で囲まれた部分の面積を$S(t)$とするとき,極限$\displaystyle \lim_{t \to +0} \frac{S(t)}{t}$の値は$[サ]$である.
北里大学 私立 北里大学 2014年 第3問
$a$は$0<a<e$を満たす定数とする.曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$,法線を$m$とおく.以下の問に答えよ.必要ならば$\displaystyle e=\lim_{k \to 0}(1+k)^{\frac{1}{k}}$で,$2.718<e<2.719$であることを用いてよい.

(1)接線$\ell$の方程式を$a$を用いて表せ.
(2)接線$\ell$が$x$軸と交わる点を$\mathrm{P}$,$y$軸と交わる点を$\mathrm{Q}$とし,原点を$\mathrm{O}$とする.三角形$\mathrm{OPQ}$の面積を$S(a)$とおくとき,$S(a)$を$a$を用いて表せ.
(3)$a$が$0<a<e$の範囲を動くとき,$(2)$の$S(a)$を最大にする$a$の値と$S(a)$の最大値を求めよ.
(4)$a$が$0<a<e$の範囲を動くとき,法線$m$が点$(e,\ 0)$を通るような$a$の値の個数はただ$1$個であることを示せ.
同志社大学 私立 同志社大学 2014年 第4問
$\mathrm{O}$を原点とする座標平面において,曲線$C_1:y=\log x+\log t$と曲線$C_2:y=ax^2$を考える.ただし$a$と$t$は正の実数である.曲線$C_1$と$C_2$は共有点$\mathrm{P}$を持ち,また,$\mathrm{P}$における$C_1$と$C_2$の接線が一致するものとする.次の問いに答えよ.

(1)$\mathrm{P}$の$x$座標を$x_0$とする.$x_0,\ a,\ t$の間に成立する関係式を書け.
(2)$x_0$と$a$をそれぞれ$t$を用いて表せ.
(3)$\mathrm{P}$における$C_2$の法線を$\ell$とする.また,$\ell$と$x$軸の交点を$\mathrm{Q}$,$\ell$と$y$軸の交点を$\mathrm{R}$とする.$\triangle \mathrm{OQR}$の面積$S(t)$を求め,また,$S(t)$を最小とする$t$の値を求めよ.
(4)$t$が$(3)$で求めた値のとき,曲線$C_1$,$C_2$と$x$軸が囲む図形の面積を求めよ.
同志社大学 私立 同志社大学 2014年 第4問
曲線$\displaystyle C_1:y=1-\frac{1}{2}x^2$上を動く点$\mathrm{P}$の座標を$(x_0,\ y_0)$とする.点$\mathrm{P}$における曲線$C_1$の法線上にあり,点$\mathrm{P}$からの距離が$1$の点で$\displaystyle y>1-\frac{1}{2}x^2$を満たす点を$\mathrm{Q}(x_1,\ y_1)$とする.また,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線が$x$軸の正の向きとなす角を$\theta (0<\theta<\pi)$とする.次の問いに答えよ.

(1)$\displaystyle \theta \neq \frac{\pi}{2}$のとき,$\tan \theta$を$x_0$を用いて表せ.
(2)$x_0$と$y_0$を$\cos \theta$と$\sin \theta$を用いて表せ.
(3)$x_1$と$y_1$を$\cos \theta$と$\sin \theta$を用いて表せ.また,$y_1=0$となるときの$\theta$の値を求めよ.
(4)曲線$C_1$上を点$\mathrm{P}$が動くとき,点$\mathrm{Q}$が描く曲線を$C_2$とする.曲線$C_2$と$x$軸が囲む図形の面積$S$を求めよ.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第4問
$y=\sqrt{x}$で表される曲線$C$と,$C$上の点$\mathrm{A}(4,\ 2)$が与えられている.このとき以下の問いに答えなさい.

(1)点$\mathrm{A}$における曲線$C$の接線および法線の方程式を求めなさい.
(2)$(1)$で求めた法線と曲線$C$および$x$軸とで囲まれた部分の面積を求めなさい.
スポンサーリンク

「法線」とは・・・

 まだこのタグの説明は執筆されていません。