タグ「毎年」の検索結果

1ページ目:全7問中1問~10問を表示)
島根県立大学 公立 島根県立大学 2015年 第2問
$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$とする.このとき,次の問いに答えなさい.

(1)$3^{30}$は何桁の整数か.
(2)$3^{30}$の一の位の数字と最高位の数字を求めなさい.
(3)$\mathrm{A}$村では人口減少が続いており,毎年$2 \, \%$ずつ減少している.毎年このままの比率で人口が減少すると仮定した場合,はじめて人口が現在の半分以下になるのは何年後かを答えなさい.
山梨大学 国立 山梨大学 2013年 第1問
次の問いに答えよ.

(1)$|x-2|+|x+3|<6$を満たす実数$x$の値の範囲を求めよ.
(2)$a_1=1,\ a_2=2,\ a_{n+2}-2a_{n+1}+a_n=1$で定められる数列$\{a_n\}$の一般項$a_n$を求めよ.
(3)毎年$1$月の人口調査で,人口が前年の$98 \%$に減少していく都市がある.この都市の人口が,初めて今年の調査の$70 \%$以下になるのは何年後の調査のときか.ただし,$\log_{10}2=0.3010$,$\log_{10}7=0.8451$として,答えは整数で求めよ.
(4)直線$y=2x$と放物線$\displaystyle y=x^2+4x+\cos 2\theta+\frac{1}{2} \ (0 \leqq \theta \leqq 2\pi)$がある.放物線に直線が接するときの$\theta$の値を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle x+\frac{1}{x}=3$のとき,$\displaystyle x^2+\frac{1}{x^2}=[ア]$であり,$x^3-5x^2+7x-2=[イ]$である.
(2)定義域を$\displaystyle 0 \leqq x \leqq \frac{\pi}{3}$とするとき,$f(x)=\cos 3x+\sin 3x$の最大値は$[ウ]$であり,最小値は$[エ]$である.
(3)ある工業製品の価格が前年比で毎年$10 \;\%$ずつ下落している.現在の価格が$1000$円であるならば,$3$年後の価格は$[オ]$円となり,価格がはじめて$200$円を下回るのは$[カ]$年後である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とし,解答欄には整数値を入れよ.
(4)曲線$y=x^3+1$と直線$\ell$が点$\mathrm{A}$で接している.また,曲線$y=x^2+ax+1 (a<0)$も$\ell$と$\mathrm{A}$で接している.このとき,$a=[キ]$であり,$\ell$の方程式は$[ク]$である.
(5)定数$a$に対して,$\displaystyle \int_a^x f(t) \, dt=x^2+x-6$であるとき,$f(x)=[ケ]$,$a=[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
ある企業が毎年$x$リットルの液体製品を製造している.生産するための総費用を$c$,設備の規模を$k$とする.製品1リットルの価格を$p$とし
\[ c= 0.01x^3+0.8x^2+(4-k)x+5k^2 \]
が成り立つとする.このとき利潤は$px-c$である.

(1)$p=15,\ k=1$のとき,$x$が
\[ \frac{[(9)][(10)]}{[(11)][(12)]} \]
のとき利潤は最大となる.
(2)生産量$x$を変えずに,設備の規模$k$を変えて総費用$c$を最小化することを考えると
\[ k=\frac{[(13)][(14)]}{[(15)][(16)]} x \]
である.
(3)$p=19$とし,$k$と$x$は(2)で求めた関係式を満たすとする.このとき$x$が
\[ [(17)][(18)][(19)]+[(20)][(21)]\sqrt{[(22)]} \]
のとき利潤は最大となる.
獨協大学 私立 獨協大学 2012年 第2問
今年から毎年初めに一定の金額$a$円を,複利法により一定の年利率$r$で積み立てるとする.今年から$n$年後の元利合計について次の問題に答えよ.

(1)今年の初めに預金する$a$円は,$1$年後いくらになるか.
(2)今年の初めに預金する$a$円は,$n$年後いくらになるか.
(3)来年の初めに預金する$a$円は,$n$年後いくらになるか.
(4)$n$年後の元利合計はいくらになるか.ただし,預金する回数は全部で$n$回とする.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
西南学院大学 私立 西南学院大学 2011年 第5問
年利率$0.05$,$1$年ごとの複利で借金をする.今年の年度初めに$1000$万円を借りた.$1$年後(今年の年度末)から返済を開始し,毎年,年度末に同じ金額を返済するものとする.このとき,以下の問に答えよ.ただし,$1.05^7=1.407$,$1.05^8=1.477$,$1.05^9=1.551$,$1.05^{10}=1.629$として計算せよ.

(注)複利での借金とは次のようなものである.ある年の年度初めに年利率$r$で$A$円を借りると,$1$年後の借金は$A(1+r)$円になる.ここで$B$円を返すと,$1$年目の年度末の借金残額は$\{A(1+r)-B\}$円になるから,$2$年後の借金は$\{A(1+r)-B\}(1+r)$円になる.

(1)毎年,年度末に$100$万円を返済するとき,$1$年目の年度末の借金残額はいくらになるか.
(2)$10$年目の年度末に返済を完了するためには,毎年,いくらずつ返済すればよいか.ただし,最後の答は,一万円未満を切り捨てて,一万円までの概数で答えよ.
(3)毎年,年度末に$100$万円を返済するとき,借金残額が初めて$500$万円以下となるのは何年目の年度末か.
スポンサーリンク

「毎年」とは・・・

 まだこのタグの説明は執筆されていません。