タグ「正方行列」の検索結果

6ページ目:全84問中51問~60問を表示)
首都大学東京 公立 首都大学東京 2012年 第3問
$A$は$2$次正方行列とし,$E$,$O$はそれぞれ$A$と同じ型の単位行列,零行列とする.$A$は$kE$($k$は実数)の形でなく,$A^2-3A+2E=O$を満たす.以下の問いに答えなさい.ただし,$n$は自然数とする.

(1)$A^3=aA+bE$を満たす実数$a,\ b$を求めなさい.
(2)$A^n=a_nA+b_nE$を満たす実数$a_n,\ b_n$を求めなさい.
(3)$A^n$の逆行列が$xA+yE \ (x,\ y\text{は実数})$と表せるとき,$x,\ y$を求めなさい.
会津大学 公立 会津大学 2012年 第6問
$a,\ b$を実数の定数として,$2$次の正方行列$A$を
\[ A=\left( \begin{array}{cc}
a & a-b \\
0 & b
\end{array} \right) \]
と定める.自然数$n$に対して$A^n$を推測し,それが正しいことを数学的帰納法を用いて証明せよ.
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
広島大学 国立 広島大学 2011年 第1問
実数 $a,\ b$に対して,$2$次正方行列$A$と列ベクトル$B$を
\[ A=\left( \begin{array}{cc}
a & 2-a \\
1+a & 2
\end{array} \right),\quad B=\left( \begin{array}{c}
2b \\
b
\end{array} \right) \]
と定め,$E =\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.等式
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+B \]
により,座標平面上の点P$(x,\ y)$に対し点P$^\prime (x^\prime,\ y^\prime)$が定まるものとする.次の問いに答えよ.

(1)$a = b = -1$のとき,点P$^\prime (3,\ 2)$となる点P$(x,\ y)$を求めよ.
(2)$A^2 = kE \ (k \text{は実数})$を満たすとき,$a,\ k$の値を求めよ.
(3)どんな点Pに対しても点P$^\prime$が原点Oに一致しないための$a,\ b$の条件を求めよ.
三重大学 国立 三重大学 2011年 第4問
$t$を実数として2次正方行列$A_t=\biggl( \begin{array}{cc}
1 & -t \\
t & 1
\end{array} \biggr)$を考える.

(1)すべての実数$t$に対し$A_t$が逆行列を持つことを示し,その逆行列$A_t^{-1}$を求めよ.
(2)各実数$t$に対し座標平面上の点$(x_t,\ y_t)$を条件$\biggl( \begin{array}{c}
x_t \\
y_t
\end{array} \biggr)=A_t^{-1}\biggl( \begin{array}{c}
1 \\
0
\end{array} \biggr)$によって定める.$t$がすべての実数を動くとき$(x_t,\ y_t)$が描く図形を求めて図示せよ.
三重大学 国立 三重大学 2011年 第3問
$t$を実数として2次正方行列$A_t=\biggl( \begin{array}{cc}
1 & -t \\
t & 1
\end{array} \biggr)$を考える.

(1)すべての実数$t$に対し$A_t$が逆行列を持つことを示し,その逆行列$A_t^{-1}$を求めよ.
(2)各実数$t$に対し座標平面上の点$(x_t,\ y_t)$を条件$\biggl( \begin{array}{c}
x_t \\
y_t
\end{array} \biggr)=A_t^{-1}\biggl( \begin{array}{c}
1 \\
0
\end{array} \biggr)$によって定める.$t$がすべての実数を動くとき$(x_t,\ y_t)$が描く図形を求めて図示せよ.
愛知教育大学 国立 愛知教育大学 2011年 第7問
2次の正方行列$A,\ B$について次の2つの条件を考える.($O$は零行列を表す.)

\mon[(a)] $A^3B^2-A^2B^3=O$
\mon[(b)] $A^2 \neq O$かつ$B^2 \neq O$


(1)(a)を満たす$A$と$B$がともに逆行列をもつとき,$A=B$であることを証明せよ.
(2)(a),(b)を満たし,$A \neq B$である$A,\ B$の例を1組あげよ.
山梨大学 国立 山梨大学 2011年 第4問
$2$次正方行列$A$は点$(1,\ 2)$を点$(1,\ 2)$へ移し,点$(3,\ 3)$を点$(9,\ 12)$へ移す.

(1)$A$を求めよ.
(2)行列$P=\left( \begin{array}{cc}
1 & 2 \\
a & b
\end{array} \right)$および$B=\left( \begin{array}{cc}
1 & 0 \\
0 & m
\end{array} \right)$は$AP=PB$を満たす.$P$が逆行列を持つときの$a,\ b,\ m$の値および逆行列$P^{-1}$を求めよ.
(3)自然数$n$について,$A^n$を$n$を用いて表せ.
(4)点$\mathrm{C}(1,\ 3)$が$A^n$により移動する点を$\mathrm{C}_n$と表す.$\mathrm{C}_n$は$n$によらない直線$\ell$上の点であることを示せ.また$\ell$の方程式を求めよ.
山形大学 国立 山形大学 2011年 第2問
2次の正方行列$A,\ B$と実数$p$が
\[ A+B=3E,\quad pA-B=\biggl( \begin{array}{cc}
0 & -3 \\
-6 & 3
\end{array} \biggr),\quad AB=O \]
を満たすとき,次の問いに答えよ.ただし,$E$は単位行列,$O$は零行列である.

(1)$(p+1)A=\biggl( \begin{array}{cc}
3 & -3 \\
-6 & 6
\end{array} \biggr),\ (p+1)B=\biggl( \begin{array}{cc}
3p & 3 \\
6 & 3(p-1)
\end{array} \biggr)$を示せ.
(2)実数$p$の値と行列$A,\ B$を求めよ.
(3)自然数$n$に対して,$A^{n+1}=3A^n$を示し,$A^n$を求めよ.
福井大学 国立 福井大学 2011年 第1問
以下の問いに答えよ.

(1)$\mathrm{O}$を原点とする座標平面上,直線$y=kx \ (k \text{は定数})$に関する対称移動を$f$で表す.また座標平面上の点$\mathrm{P}$に対して,直線$\mathrm{OP}$を$\mathrm{O}$を中心として角$\displaystyle \frac{\pi}{4}$だけ回転して得られる直線$\ell$に$\mathrm{P}$から下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$を$\mathrm{Q}$に移す移動を$g$で表す.ただし$\mathrm{O}$は$g$により$\mathrm{O}$自身に移動するものとする.$f,\ g$をこの順に続けて行って得られる移動(合成変換$g \circ f$)を表す行列を$A$とおくとき,$A$およびその逆行列$A^{-1}$を求めよ.
(2)2次の正方行列$M=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$T(M)=a+d,\ D(M)=ad-bc$と定める.このとき以下の命題を証明せよ. \\
「すべての自然数$n$に対して$T(M^n)=\{T(M)\}^n$が成り立つことと,$D(M)=0$であることは,互いに同値である.」
スポンサーリンク

「正方行列」とは・・・

 まだこのタグの説明は執筆されていません。