タグ「正方形」の検索結果

5ページ目:全129問中41問~50問を表示)
龍谷大学 私立 龍谷大学 2015年 第3問
一辺$30 \, \mathrm{cm}$の正方形の厚紙の四隅から,一辺の長さが$x \, \mathrm{cm}$の正方形を切り取って,その残りを折り曲げ,ふたのない直方体の箱を作る.この箱の容積を$V(x) \, \mathrm{cm}^3$とする.

(1)$V(x)$の最大値を求めなさい.
(2)$V(x)=1000$となるときの$x$の値をすべて求めなさい.
奈良県立医科大学 公立 奈良県立医科大学 2015年 第7問
下の図形の中に,図形の線分を辺とする長方形(正方形を含む)はいくつあるか求めよ.
(図は省略)
奈良県立医科大学 公立 奈良県立医科大学 2015年 第12問
$1$辺の長さが$1$の正方形$A_1$とその内接円$S_1$がある.円$S_1$に内接する正方形$A_2$とその内接円$S_2$がある.このようにして,内接円$S_{n-1}$に内接する正方形$A_n$とその内接円$S_n$がある.$A_1$から$A_n$までの面積の総和を$T_n$とするとき,$\displaystyle \lim_{n \to \infty}T_n$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2015年 第4問
一辺の長さが$1$の正方形の紙片$\mathrm{ABCD}$の辺$\mathrm{BC}$上に点$\mathrm{P}$を$\mathrm{BP}=t$となるようにとる.ここで$t$は$0<t<1$をみたす実数とする.辺$\mathrm{AB}$上に点$\mathrm{Q}$,辺$\mathrm{CD}$上に点$\mathrm{R}$をとって,線分$\mathrm{QR}$を折り目として,この紙片を折ると,点$\mathrm{A}$と点$\mathrm{P}$が重なるとする.また線分$\mathrm{AP}$と線分$\mathrm{QR}$の交点を$\mathrm{S}$とする.このとき,次の問いに答えよ.

(1)線分$\mathrm{AS}$の長さを$t$で表せ.
(2)線分$\mathrm{QB}$と線分$\mathrm{RC}$の長さを$t$で表せ.
宮城大学 公立 宮城大学 2015年 第1問
次の問いに答えなさい.

(1)平面上で,互いに平行な$5$本の直線とこれらに直交する$6$本の直線について,互いに隣り合う平行線どうしの間の距離がすべて等しく,その距離を$d (d>0)$とするとき,これらの平行線を使ってできるすべての長方形の個数を求めなさい.また,これら長方形のうち,正方形でない長方形の個数を求めなさい.
(2)$\log_{10}2<0.31$が成り立つことを示しなさい.
北九州市立大学 公立 北九州市立大学 2015年 第4問
$1$個のサイコロを$3$回続けて投げる.$xy$平面上で,原点$\mathrm{O}$を起点とし$1$回目に出た目と同じ数だけ$x$座標を増加させた点を$\mathrm{A}$とする.次に,点$\mathrm{A}$を起点とし$2$回目に出た目と同じ数だけ$y$座標を増加させた点を$\mathrm{B}$とする.さらに,点$\mathrm{B}$を起点とし$3$回目に出た目と同じ数だけ$x$座標を減少させた点を$\mathrm{C}$とする.また,四角形$\mathrm{OABC}$の面積を$S$とおく.以下の問題に答えよ.

(1)四角形$\mathrm{OABC}$が正方形になる確率を求めよ.
(2)線分$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$の長さがすべて異なる確率を求めよ.
(3)$\angle \mathrm{COA}={45}^\circ$になる確率を求めよ.
(4)面積$S$が整数になる確率を求めよ.
(5)面積$S$が$25$以上になる確率を求めよ.
東京大学 国立 東京大学 2014年 第1問
$1$辺の長さが$1$の正方形を底面とする四角柱$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を,それぞれ辺$\mathrm{AE}$,辺$\mathrm{BF}$,辺$\mathrm{CG}$上に,$4$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が同一平面上にあるようにとる.四角形$\mathrm{OPQR}$の面積を$S$とおく.また,$\angle \mathrm{AOP}$を$\alpha$,$\angle \mathrm{COR}$を$\beta$とおく.

(1)$S$を$\tan \alpha$と$\tan \beta$を用いて表せ.

(2)$\displaystyle \alpha+\beta=\frac{\pi}{4},\ S=\frac{7}{6}$であるとき,$\tan \alpha+\tan \beta$の値を求めよ.さらに,$\alpha \leqq \beta$のとき,$\tan \alpha$の値を求めよ.
(図は省略)
神戸大学 国立 神戸大学 2014年 第3問
空間において,原点$\mathrm{O}$を通らない平面$\alpha$上に一辺の長さ$1$の正方形があり,その頂点を順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.このとき,以下の問に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$のとき,ベクトル
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}} \]
が,平面$\alpha$と垂直であることを示せ.
神戸大学 国立 神戸大学 2014年 第3問
空間において,原点$\mathrm{O}$を通らない平面$\alpha$上に一辺の長さ$1$の正方形があり,その頂点を順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.このとき,以下の問に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$のとき,ベクトル
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}} \]
が,平面$\alpha$と垂直であることを示せ.
千葉大学 国立 千葉大学 2014年 第1問
下図のような$1$辺の長さ$10 \, \mathrm{cm}$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1 \, \mathrm{cm}$進む.また,点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$2 \, \mathrm{cm}$進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$35 \, \mathrm{cm}^2$となる時刻をすべて求めよ.

\begin{zahyou*}%
[ul=10mm,Ueyohaku=1em,
Hidariyohaku=1em,%
Sitayohaku=1em]%
(0,3)(0,3)
\tenretu{A(0,3)nw;B(0,0)sw;%
C(3,0)se;D(3,3)ne}
\Takakkei{\A\B\C\D}
\end{zahyou*}
スポンサーリンク

「正方形」とは・・・

 まだこのタグの説明は執筆されていません。