タグ「正方形」の検索結果

12ページ目:全129問中111問~120問を表示)
佐賀大学 国立 佐賀大学 2011年 第3問
次の問いに答えよ.

(1)正方形$\mathrm{ABCD}$が図のように3つの線分$\mathrm{EG}$,$\mathrm{FH}$,$\mathrm{CG}$に \\
よって4つの部分に分割されている.四角形$\mathrm{AEGH}$は面積 \\
が400の正方形になり,三角形$\mathrm{FCG}$は面積が8になる. \\
このとき,正方形$\mathrm{ABCD}$の面積を求めよ.
\img{711_2922_2011_1}{30}

(2)「2116の正の平方根を求めよ」という問題に対して \\
以下のような答案があった.この答案の意図を解説せよ. \\
(答案) \quad まず$40^2<2116<50^2$なので,$2116-40^2=516$を出す.次に516を2で割って258が出る.この258を40で割ると商が6で余りが18になる.さらに余りの18に2をかければ$36=6^2$となり商の2乗が出る. \\
最後に$40^2$と$6^2$とから$40+6=46$が得られる.以上により,求める答えは46になる.
宮城教育大学 国立 宮城教育大学 2011年 第3問
$n$を1以上の整数とする.$k=1,\ 2,\ \cdots,\ n,\ n+1$に対して,$xy$平面上で,点$(0,\ k)$を通り$x$軸に平行な直線を$\ell_k$とし,点$(k,\ 0)$を通り$y$軸に平行な直線を$m_k$とする.このとき,次の問いに答えよ.

(1)直線
\[ \ell_1,\ \ell_2,\ \cdots,\ \ell_n,\ \ell_{n+1} \]
から相異なる2本を選び,直線
\[ m_1,\ m_2,\ \cdots,\ m_n,\ m_{n+1} \]
から相異なる2本を選ぶと長方形が1つできる.こうしてできる長方形の総数を求めよ.ただし,合同であっても位置が違う長方形は異なるものとする.
(2)(1)で考えた長方形のうちから1つとるとき,それが正方形である確率を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第1問
三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$は辺$\mathrm{A}_0 \mathrm{B}_0$の長さが$a$,$\angle \mathrm{A}_0=60^\circ$,$\angle \mathrm{B}_0=90^\circ$の直角三角形であり,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$は辺${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime$の長さが$a$,$\angle {\mathrm{A}_0}^\prime=45^\circ$,$\angle {\mathrm{B}_0}^\prime=90^\circ$の直角三角形である.右図に示すように三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の$3$つの辺上にそれぞれ点$\mathrm{D}_1$,$\mathrm{A}_1$,$\mathrm{B}_1$をとり,正方形$\mathrm{B}_0 \mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$を作る.次に,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}$の$3$つの辺上に点$\mathrm{D}_2$,$\mathrm{A}_2$,$\mathrm{B}_2$をとり,正方形$\mathrm{B}_1 \mathrm{D}_2 \mathrm{A}_2 \mathrm{B}_2$を作る.これを繰り返し,正方形$\mathrm{B}_{j-1} \mathrm{D}_j \mathrm{A}_j \mathrm{B}_j$を作る.その正方形の面積を$S_j$とおく.ただし,$j=1,\ 2,\ \cdots$である.同様な操作で,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$にも正方形${\mathrm{B}_{j-1}}^\prime {\mathrm{D}_j}^\prime {\mathrm{A}_j}^\prime {\mathrm{B}_j}^\prime$を作り,その正方形の面積を${S_j}^\prime$とおく.これらの図形について以下の問いに答えよ.
(図は省略)

(1)$S_1$を$a$を用いた式で示せ.
(2)$S_j$を$a$と$j$を用いた式で示せ.
(3)三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$内に正方形を描くことを無限に繰り返すとき,正方形の面積の総和$S_\mathrm{T}$が三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の面積$S_0$に占める割合を求めよ.
(4)$\displaystyle c_j=\frac{S_{j+2}}{{S_j}^\prime}$で定義される一般項$c_j$を持つ無限級数は,収束するか発散するかを,根拠を式で示した上で答えよ.
防衛大学校 国立 防衛大学校 2011年 第3問
右の図のような格子状の道および斜めの道がある.次の場合の最短経路は何通りあるか.ただし,小さいマス目はすべて合同な正方形とする.
(図は省略)

(1)$\mathrm{A}$から$\mathrm{B}$まで行く.
(2)$\mathrm{A}$から斜めの道を通らずに$\mathrm{B}$まで行く.
(3)$\mathrm{A}$から$\mathrm{C}$まで行く.
南山大学 私立 南山大学 2011年 第2問
座標平面上に放物線$C:y=x^2$と$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(-p,\ p^2)$,$\mathrm{R}(-p,\ p^2+2p)$,$\mathrm{S}(p,\ p^2+2p)$がある.また,$3$次関数$y=f(x)$は$x=-p$で極小値$p^2$,$x=p$で極大値$p^2+2p$をとる.ただし,$p>0$とする.

(1)$C$と線分$\mathrm{PQ}$で囲まれた部分の面積と正方形$\mathrm{PQRS}$の面積が等しくなる$p$の値を求めよ.
(2)$f(x)$を$p$で表せ.
(3)$\mathrm{P}$における$C$の接線を$\ell$とする.曲線$y=f(x)$上の点$(a,\ f(a))$における接線が$\ell$と垂直になるとき,$a$を$p$で表せ.
明治大学 私立 明治大学 2011年 第3問
自然数$n,\ k$について,$xy$平面上で$0 \leqq y \leqq x$と$y \leqq 2n+k-x$で定まる領域を$C_k$とする.ある整数$a,\ b$に対して,$(a,\ b)$,$(a+k,\ b)$,$(a,\ b+k)$,$(a+k,\ b+k)$を頂点にもつ正方形を$1$辺が$k$の格子点の正方形と呼ぶ事にする.$C_k$に入る格子点の正方形を考える($C_k$の境界も含める).このとき,次の問いに答えよ.

(1)$n=4$のとき,$C_k$内に$1$辺が$k$の格子点の正方形が存在するための,最大の$k$をもとめよ.
(2)$1$辺が$k$の格子点の正方形が,$C_k$内に存在するための$k$の条件を,$n$であらわせ.
(3)$C_k$内にある$1$辺が$k$の格子点の正方形の総数を$a_k$とするとき,$a_k$を$n$と$k$の式であらわせ.
(4)$a_1+a_2+\cdots +a_n$をもとめよ.
西南学院大学 私立 西南学院大学 2011年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$が,円に内接している.小さい方の弧$\mathrm{AD}$上に点$\mathrm{P}$を,$\displaystyle \angle \mathrm{ABP}=\frac{\pi}{6}$となるようにとるとき,以下の問に答えよ.

(1)この外接円の面積は$\displaystyle \frac{[ヌ]}{[ネ]} \pi$である.
(2)線分$\mathrm{BP}$と辺$\mathrm{AD}$との交点を$\mathrm{Q}$とする.このとき,四角形$\mathrm{BCDQ}$の面積は,$\displaystyle \frac{[ノ]-\sqrt{[ハ]}}{[ヒ]}$である.
(3)三角形$\mathrm{ABP}$の面積は,$\displaystyle \frac{[フ]+\sqrt{[ヘ]}}{[ホ]}$である.
西南学院大学 私立 西南学院大学 2011年 第2問
次の問に答えよ.

(1)下図のように,正方形の各辺を$6$等分し,各辺に平行線を引く.これらの平行線によって作られる正方形でない長方形の総数は$[キクケ]$個である.
(図は省略)
(2)円周を$10$等分する$10$個の点がある.これらのうちの$3$個の点を頂点とする三角形を考える.直角三角形は全部で$[コサ]$個あり,また鈍角三角形は全部で$[シス]$個ある.
中央大学 私立 中央大学 2011年 第3問
一辺の長さが$a$の正方形を底面とし,高さ$h$の正四角錐がある.下の図のように,この正四角錐に,底面が正方形の正四角柱を内接させる.このとき,以下の問いに答えよ.

(1)内接する正四角柱の底面の一辺の長さを$x$とするとき,この正四角柱の体積を求めよ.
(2)内接する正四角柱の体積が最大になるときの$x$の値を求めよ.また,そのときの正四角柱の体積を求めよ.
(図は省略)
東北医科薬科大学 私立 東北医科薬科大学 2011年 第3問
円周を$8$等分する点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_8$からいくつかの点を無作為に選ぶ.どの点も選ばれる確率は等しいとするとき,次の問に答えなさい.

(1)異なる$2$点を選ぶとき,この$2$点を端点とする線分が円の直径となる確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)異なる$3$点を選ぶとき,この$3$点からなる三角形が直角二等辺三角形となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)異なる$4$点を選ぶとき,この$4$点からなる四角形が正方形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
(4)異なる$3$点を選ぶとき,この$3$点からなる三角形が二等辺三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)異なる$5$点を選ぶとき,この$5$点からなる五角形を$F$とする.残りの$3$点のうち$2$点を端点とする線分がいずれも五角形$F$と交わる確率は$\displaystyle \frac{[コ]}{[サ]}$である.
スポンサーリンク

「正方形」とは・・・

 まだこのタグの説明は執筆されていません。