タグ「正数」の検索結果

1ページ目:全5問中1問~10問を表示)
青山学院大学 私立 青山学院大学 2016年 第1問
小数第$1$位までで表される正数$X,\ Y$に対して,$m,\ n$を
\[ X-0.4 \leqq m \leqq X+0.5,\quad Y-0.4 \leqq n \leqq Y+0.5 \quad \cdots \quad ① \]
を満たす$0$以上の整数とする.このとき,次の問に答えよ.

(1)$X=2.6$のとき$m=[$1$]$であり,$Y=4.3$のとき$n=[$2$]$である.
(2)関係式$①$を満たす$X,\ Y,\ m,\ n$に対して,さらに関係式
\[ \left\{ \begin{array}{lll}
5X-4Y=22.2 & \cdots & ② \\
2m+3n=26 & \cdots & ③
\end{array} \right. \]
が成立するという.$X,\ Y,\ m,\ n$を求めよう.
関係式$③$を満たす$0$以上の整数$m,\ n$のうちで,対応する$X,\ Y$が関係式$②$を満たすのは$m=[$3$]$,$n=[$4$]$である.このとき,
\[ X=[$3$]+\frac{x}{10},\quad Y=[$4$]+\frac{y}{10} \]
とすると,$5x-4y=[$5$][$6$]$が成り立つ.
以上のことから,$x=[$7$]$,$y=[$8$][$9$]$となる.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$x$に関する$3$つの関数$f_1(x)=x(15-x)$,$\displaystyle f_2(x)=\frac{x(30-x)}{2}$,$f_3(x)=x(17-x)$が与えられている.

(1)$x_1+x_2=c$,$x_1 \geqq 0$,$x_2 \geqq 0$という条件の下で$f_1(x_1)+f_2(x_2)$を最大にする問題を考える.ただし,$c$は$20$以下の正数とする.最大値$V(c)$を与える$x_1,\ x_2$の値をそれぞれ$p,\ q$とすると,$\displaystyle q=\frac{[$10$][$11$]}{[$12$][$13$]}c$である.$V(c)=42$となる$c$の値は$[$14$][$15$]$である.
(2)$x_1+x_2+x_3=20$,$x_1 \geqq 0$,$x_2 \geqq 0$,$x_3 \geqq 0$という条件の下で
\[ f_1(x_1)+f_2(x_2)+f_3(x_3) \]
を最大にする問題を考える.最大値を与える$x_1,\ x_2,\ x_3$の値をそれぞれ$p,\ q,\ r$とすると
\[ q=\frac{[$16$][$17$]}{[$18$][$19$]},\quad r=\frac{[$20$][$21$]}{[$22$][$23$]} \]
である.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第3問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.$x,\ y$を正数とし,$\ell_1,\ \ell_2,\ \ell_3$上に点P$_1$,P$_2$,P$_3$をそれぞれ,$\text{OP}_1=1,\ \text{OP}_2=x,\ \text{OP}_3=y$となるようにとる.$\triangle$P$_1$P$_2$P$_3$が正三角形となる$x,\ y$が存在するような$\cos \theta$の範囲を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
$x$-$y$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{2}},\ 0 \right)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{\sqrt{2}} \right)$をとり,図のように,$\triangle \mathrm{OAB}$の各辺上または内部に,$\mathrm{DE} \para \mathrm{OB}$かつ$\angle \mathrm{DCE}$を直角とする二等辺三角形$\mathrm{CDE}$をとる.点$\mathrm{C}$,$\mathrm{E}$はそれぞれ$\mathrm{OB}$,$\mathrm{AB}$上の点とする.線分$\mathrm{CE}$の長さを$m (>0)$とおくとき,次の各問に答えよ.

(1)$m$の最大値を求めよ.
(2)$s,\ t$を正数とし,ベクトル$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}$を$[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}}$と表すとき,空欄$[ア]$,$[イ]$をそれぞれ$s,\ t$および$m$の式で表せ.
(3)等式$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$をみたす$s$,$t$をそれぞれ$m$の式で表せ.
(4)(3)で求めた$s,\ t$を用いて,点$\mathrm{P}(x,\ y)$を$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$によって定める.このとき,$\displaystyle \frac{y}{x}$を$\displaystyle \frac{1}{m}$の式で表せ.
(5)(4)における点$\mathrm{P}(x,\ y)$の軌跡は$x,\ y$の方程式
\[ (x+[ウ])^2+(y-[エ])^2=[オ] \]
で表される.このとき,空欄$[ウ]$,$[エ]$,$[オ]$にあてはまる数値を求めよ.
(図は省略)
大阪大学 国立 大阪大学 2011年 第5問
正数$r$に対して,$a_1=0,\ a_2=r$とおき,数列$\{a_n\}$を次の漸化式で定める.
\[ a_{n+1}=a_n+r_n(a_n-a_{n-1}) \quad (n=2,\ 3,\ 4,\ \cdots) \]
ただし$a_n$と$a_{n-1}$から漸化式を用いて$a_{n+1}$を決める際には硬貨を投げ,表がでたとき$\displaystyle r_n=\frac{r}{2}$,裏がでたとき$\displaystyle r_n=\frac{1}{2r}$とする.ここで表がでる確率と裏がでる確率は等しいとする.$a_n$の期待値を$p_n$とするとき,以下の問いに答えよ.

(1)$p_3$および$p_4$を,$r$を用いて表せ.
(2)$n \geqq 3$のときに$p_n$を,$n$と$r$を用いて表せ.
(3)数列$\{p_n\}$が収束するような正数$r$の範囲を求めよ.
(4)$r$が(3)で求めた範囲を動くとき,極限値$\displaystyle \lim_{n \to \infty}p_n$の最小値を求めよ.
スポンサーリンク

「正数」とは・・・

 まだこのタグの説明は執筆されていません。